(file) Return to Thread.h CVS log (file) (dir) Up to [Pegasus] / pegasus / src / Pegasus / Common

Diff for /pegasus/src/Pegasus/Common/Thread.h between version 1.1.2.2 and 1.27

version 1.1.2.2, 2001/07/30 14:37:56 version 1.27, 2003/06/14 19:25:38
Line 1 
Line 1 
 //%/////////////////////////////////////////////////////////////////////////////  //%/-*-c++-*-////////////////////////////////////////////////////////////////////////////
 // //
 // Copyright (c) 2000, 2001 The Open group, BMC Software, Tivoli Systems, IBM  // Copyright (c) 2000, 2001, 2002 BMC Software, Hewlett-Packard Company, IBM,
   // The Open Group, Tivoli Systems
 // //
 // Permission is hereby granted, free of charge, to any person obtaining a copy // Permission is hereby granted, free of charge, to any person obtaining a copy
 // of this software and associated documentation files (the "Software"), to // of this software and associated documentation files (the "Software"), to
Line 26 
Line 27 
 // //
 //%///////////////////////////////////////////////////////////////////////////// //%/////////////////////////////////////////////////////////////////////////////
  
   
 #ifndef Pegasus_Thread_h #ifndef Pegasus_Thread_h
 #define Pegasus_Thread_h #define Pegasus_Thread_h
  
 #include <Pegasus/Common/IPC.h>  #include <cstring>
 #include <Pegasus/Common/Config.h> #include <Pegasus/Common/Config.h>
 #include <Pegasus/Common/Exception.h>  #include <Pegasus/Common/IPC.h>
   #include <Pegasus/Common/InternalException.h>
 #include <Pegasus/Common/DQueue.h> #include <Pegasus/Common/DQueue.h>
   #include <Pegasus/Common/Linkage.h>
  
 PEGASUS_NAMESPACE_BEGIN PEGASUS_NAMESPACE_BEGIN
  
 class PEGASUS_EXPORT cleanup_handler  class PEGASUS_COMMON_LINKAGE cleanup_handler
 { {
  
  public:  public:
   cleanup_handler( void (*routine)(void *), void *arg  ) : _routine(routine), _arg(arg)  {}   cleanup_handler( void (*routine)(void *), void *arg  ) : _routine(routine), _arg(arg)  {}
   ~cleanup_handler() ;        ~cleanup_handler()  {; }
         inline Boolean operator==(const void *key) const
         {
            if(key == (void *)_routine)
               return true;
            return false;
         }
         inline Boolean operator ==(const cleanup_handler & b) const
         {
            return(operator==((const void *)b._routine));
         }
  private:  private:
   void execute(void) { _routine(_arg); }   void execute(void) { _routine(_arg); }
   cleanup_handler();   cleanup_handler();
   void (*_routine)(void *);   void (*_routine)(void *);
   inline Boolean operator==(void *key) { if(key == (void *)_routine) return true; return false; }  
   void *_arg;   void *_arg;
   PEGASUS_CLEANUP_HANDLE _cleanup_buffer;   PEGASUS_CLEANUP_HANDLE _cleanup_buffer;
   friend class Dqueue;        friend class DQueue<class cleanup_handler>;
   friend class Thread;   friend class Thread;
 }; };
  
 /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
  
 class PEGASUS_EXPORT SimpleThread  
   class  PEGASUS_COMMON_LINKAGE thread_data
 { {
  
  public:  public:
   SimpleThread( PEGASUS_THREAD_RETURN (PEGASUS_THREAD_CDECL *start )(void *),        static void default_delete(void *data);
           void *parameter, Boolean detached );  
   
   ~SimpleThread();  
   
   void run(void);  
   
   Uint32 threadId(void);  
   
   // get the user parameter  
   void *get_parm(void);  
   
   // cancellation must be deferred (not asynchronous)  
   // for user-level threads the thread itself can decide  
   // when it should die.  
   void cancel(void);  
   
   void kill(int signum);  
   
   // cancel if there is a pending cancellation request  
   void test_cancel(void);  
   
   // for user-level threads  - put the calling thread  
   // to sleep and jump to the thread scheduler.  
   // platforms with preemptive scheduling and native threads  
   // can define this to be a no-op.  
   // platforms without preemptive scheduling like NetWare  
   // or gnu portable threads will have an existing  
   // routine that can be mapped to this method  
   
   void thread_switch(void);  
   
   // suspend this thread  
   void suspend(void) ;  
   
   // resume this thread  
   void resume(void) ;  
   
   void sleep(Uint32 msec) ;  
   
   // block the calling thread until this thread terminates  
   void join( PEGASUS_THREAD_RETURN *ret_val);  
   
  
   // stack of functions to be called when thread terminates        thread_data( const Sint8 *key ) : _delete_func(NULL) , _data(NULL), _size(0)
   // will be called last in first out (LIFO)        {
   void cleanup_push( void (*routine) (void *), void *parm );           PEGASUS_ASSERT(key != NULL);
   void cleanup_pop(Boolean execute) ;           size_t keysize = strlen(key);
            _key = new Sint8 [keysize + 1];
   PEGASUS_THREAD_TYPE self(void) ;           memcpy(_key, key, keysize);
            _key[keysize] = 0x00;
  
  private:        }
   SimpleThread();  
  
   PEGASUS_THREAD_HANDLE _handle;        thread_data(const Sint8 *key, size_t size) : _delete_func(default_delete), _size(size)
   Boolean _is_detached;        {
   Boolean _cancel_enabled;           PEGASUS_ASSERT(key != NULL);
   Boolean _cancelled;           size_t keysize = strlen(key);
            _key = new Sint8 [keysize + 1];
            memcpy(_key, key, keysize);
            _key[keysize] = 0x00;
            _data = ::operator new(_size) ;
  
   //PEGASUS_SEM_HANDLE _suspend_count;        }
   Semaphore _suspend;  
  
   // always pass this * as the void * parameter to the thread        thread_data(const Sint8 *key, size_t size, void *data) : _delete_func(default_delete), _size(size)
   // store the user parameter in _thread_parm        {
            PEGASUS_ASSERT(key != NULL);
            PEGASUS_ASSERT(data != NULL);
            size_t keysize = strlen(key);
   
            _key = new Sint8[keysize + 1];
            memcpy(_key, key, keysize);
            _key[keysize] = 0x00;
            _data = ::operator new(_size);
            memcpy(_data, data, size);
         }
  
   PEGASUS_THREAD_RETURN  ( PEGASUS_THREAD_CDECL *_start)(void *) ;        ~thread_data()
         {
            if( _data != NULL)
               if(_delete_func != NULL)
               {
                  _delete_func( _data );
               }
            if( _key != NULL )
               delete [] _key;
         }
  
   void *_thread_parm;        void put_data(void (*del)(void *), size_t size, void *data ) throw(NullPointer)
 } ;        {
            if(_data != NULL)
               if(_delete_func != NULL)
                  _delete_func(_data);
  
 ///////////////////////////////////////////////////////////////////////////////           _delete_func = del;
            _data = data;
            _size = size;
            return ;
         }
  
 static void default_delete(void * data) { delete [] (char *) data; }        size_t get_size(void) { return _size; }
  
 class  PEGASUS_EXPORT thread_data        void get_data(void **data, size_t *size)
 { {
            if(data == NULL || size == NULL)
               throw NullPointer();
   
            *data = _data;
            *size = _size;
            return;
  
  public:  
   thread_data( Sint8 *key ) : _delete_func(NULL) , _data(NULL), _size(0)  
     {  
       _key = strdup(key) ;  
     }     }
  
   thread_data(Sint8 *key, int size)        void copy_data(void **buf, size_t *size) throw(NullPointer)
     {     {
       _delete_func = default_delete;           if((buf == NULL) || (size == NULL))
       _data = new char [size];              throw NullPointer() ;
            *buf = ::operator new(_size);
            *size = _size;
            memcpy(*buf, _data, _size);
            return;
     }     }
  
   thread_data(Sint8 *key, int size, void *data)        inline Boolean operator==(const void *key) const
     {     {
       _delete_func = default_delete;           if ( ! strcmp(_key, (Sint8 *)key))
       _data = new char [size];              return(true);
       memcpy(_data, data, size);           return(false);
     }     }
  
   ~thread_data() { if( _data != NULL) _delete_func( _data ); }        inline Boolean operator==(const thread_data& b) const
   
   void *get_data(void );  
   Uint32 get_data_size(void);  
   void *put_data(Sint8 *key, void (*delete_func) (void *), Uint32 size, void *data  )  
     {     {
       void *old_data = data;           return(operator==((const void *)b._key));
       _delete_func = delete_func;  
       _data = data;  
       return(old_data);  
     }     }
   
  private:  private:
   inline Boolean operator ==(void *key) ;  
   void (*_delete_func) (void *data) ;   void (*_delete_func) (void *data) ;
   thread_data();   thread_data();
   void *_data;   void *_data;
   Uint32 _size;        size_t _size;
   Sint8 *_key;   Sint8 *_key;
   friend class Dqueue;  
         friend class DQueue<thread_data>;
   friend class Thread;   friend class Thread;
 }; };
  
  
 /////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
  
 class PEGASUS_EXPORT Thread  class PEGASUS_COMMON_LINKAGE ThreadPool;
   
   class PEGASUS_COMMON_LINKAGE Thread
 { {
  
  public:  public:
Line 194 
Line 195 
   void run(void);   void run(void);
  
   // get the user parameter   // get the user parameter
   void *get_parm(void);        inline void *get_parm(void) { return _thread_parm; }
  
   // send the thread a signal -- may not be appropriate due to Windows   // send the thread a signal -- may not be appropriate due to Windows
   //  void kill(int signum);   //  void kill(int signum);
Line 207 
Line 208 
   // cancel if there is a pending cancellation request   // cancel if there is a pending cancellation request
   void test_cancel(void);   void test_cancel(void);
  
         Boolean is_cancelled(void);
   
   // for user-level threads  - put the calling thread   // for user-level threads  - put the calling thread
   // to sleep and jump to the thread scheduler.   // to sleep and jump to the thread scheduler.
   // platforms with preemptive scheduling and native threads   // platforms with preemptive scheduling and native threads
Line 217 
Line 220 
  
   void thread_switch(void);   void thread_switch(void);
  
   #if defined(PEGASUS_PLATFORM_LINUX_GENERIC_GNU)
   // suspend this thread   // suspend this thread
   // void suspend(void) ;        void suspend(void) ;
  
   // resume this thread   // resume this thread
   // void resume(void) ;        void resume(void) ;
   #endif
  
   void sleep(Uint32 msec) ;        static void sleep(Uint32 msec) ;
  
   // block the calling thread until this thread terminates   // block the calling thread until this thread terminates
   void join(void );   void join(void );
         void thread_init(void);
  
         // thread routine needs to call this function when
         // it is ready to exit
         void exit_self(PEGASUS_THREAD_RETURN return_code) ;
  
   // stack of functions to be called when thread terminates   // stack of functions to be called when thread terminates
   // will be called last in first out (LIFO)   // will be called last in first out (LIFO)
   void cleanup_push( void (*routine) (void *), void *parm ) throw(IPCException);   void cleanup_push( void (*routine) (void *), void *parm ) throw(IPCException);
   void cleanup_pop(Boolean execute = true) throw(IPCException);   void cleanup_pop(Boolean execute = true) throw(IPCException);
  
   // thread specific data (thread_data object methods)        // create and initialize a tsd
         inline void create_tsd(const Sint8 *key, int size, void *buffer) throw(IPCException)
         {
            thread_data *tsd = new thread_data(key, size, buffer);
            try { _tsd.insert_first(tsd); }
            catch(IPCException& e) { e = e; delete tsd; throw; }
         }
  
   // create an empty tsd and index it according to <key>        // get the buffer associated with the key
   void create_tsd(void *key );        // NOTE: this call leaves the tsd LOCKED !!!!
         inline void *reference_tsd(const Sint8 *key) throw(IPCException)
         {
            _tsd.lock();
            thread_data *tsd = _tsd.reference((const void *)key);
            if(tsd != NULL)
               return( (void *)(tsd->_data) );
            else
               return(NULL);
         }
  
   // create an empty tsd with a pre-allocated buffer of <size>        inline void *try_reference_tsd(const Sint8 *key) throw(IPCException)
   void create_tsd(void *key, int size) ;        {
            _tsd.try_lock();
            thread_data *tsd = _tsd.reference((const void *)key);
            if(tsd != NULL)
               return((void *)(tsd->_data) );
            else
               return(NULL);
         }
  
   // create and initialize a tsd  
   void create_tsd(void *key, int size, void *buffer);  
  
   // get the buffer associated with the key        // release the lock held on the tsd
   void *get_tsd(void *key);        // NOTE: assumes a corresponding and prior call to reference_tsd() !!!
         inline void dereference_tsd(void) throw(IPCException)
         {
            _tsd.unlock();
         }
  
   // delete the tsd associated with the key   // delete the tsd associated with the key
   void delete_tsd(void *key);        inline void delete_tsd(const Sint8 *key) throw(IPCException)
         {
            thread_data *tsd = _tsd.remove((const void *)key);
            if(tsd != NULL)
               delete tsd;
         }
   
         // Note: Caller must delete the thread_data object returned (if not null)
         inline void *remove_tsd(const Sint8 *key) throw(IPCException)
         {
            return(_tsd.remove((const void *)key));
         }
   
         inline void empty_tsd(void) throw(IPCException)
         {
            thread_data* tsd;
            while (0 != (tsd = _tsd.remove_first()))
            {
               delete tsd;
            }
            //_tsd.empty_list();
         }
  
   // create or re-initialize tsd associated with the key   // create or re-initialize tsd associated with the key
   // if the tsd already exists, return the existing buffer        // if the tsd already exists, delete the existing buffer
   void * put_tsd(void *key, void (*delete_func)(void *), Uint32 size, void *value);        void put_tsd(const Sint8 *key, void (*delete_func)(void *), Uint32 size, void *value)
            throw(IPCException)
  
         {
            PEGASUS_ASSERT(key != NULL);
            thread_data *tsd ;
            tsd = _tsd.remove((const void *)key);  // may throw an IPC exception
            delete tsd;
            thread_data *ntsd = new thread_data(key);
            ntsd->put_data(delete_func, size, value);
            try { _tsd.insert_first(ntsd); }
            catch(IPCException& e) { e = e; delete ntsd; throw; }
         }
   inline PEGASUS_THREAD_RETURN get_exit(void) { return _exit_code; }   inline PEGASUS_THREAD_RETURN get_exit(void) { return _exit_code; }
   inline PEGASUS_THREAD_TYPE self(void) {return _handle.thid; }        inline PEGASUS_THREAD_TYPE self(void) {return pegasus_thread_self(); }
   
         PEGASUS_THREAD_HANDLE getThreadHandle() {return _handle;}
   
         inline Boolean operator==(const void *key) const
         {
            if ( (void *)this == key)
               return(true);
            return(false);
         }
         inline Boolean operator==(const Thread & b) const
         {
            return(operator==((const void *)&b ));
         }
   
         void detach(void);
  
  private:  private:
   Thread();   Thread();
         inline void create_tsd(const Sint8 *key ) throw(IPCException)
         {
            thread_data *tsd = new thread_data(key);
            try { _tsd.insert_first(tsd); }
            catch(IPCException& e) { e = e; delete tsd; throw; }
         }
   PEGASUS_THREAD_HANDLE _handle;   PEGASUS_THREAD_HANDLE _handle;
   Boolean _is_detached;   Boolean _is_detached;
   Boolean _cancel_enabled;   Boolean _cancel_enabled;
Line 272 
Line 357 
   // store the user parameter in _thread_parm   // store the user parameter in _thread_parm
  
   PEGASUS_THREAD_RETURN  ( PEGASUS_THREAD_CDECL *_start)(void *) ;   PEGASUS_THREAD_RETURN  ( PEGASUS_THREAD_CDECL *_start)(void *) ;
         DQueue<class cleanup_handler> _cleanup;
         DQueue<class thread_data> _tsd;
  
   DQueue<cleanup_handler> _cleanup;  
   DQueue<thread_data> _tsd;  
   void *_thread_parm;   void *_thread_parm;
   
   PEGASUS_THREAD_RETURN _exit_code;   PEGASUS_THREAD_RETURN _exit_code;
         static Boolean _signals_blocked;
         friend class ThreadPool;
 } ; } ;
  
  
 #if 0  class PEGASUS_COMMON_LINKAGE ThreadPool
 class PEGASUS_EXPORT Aggregator {  {
   
  public:  public:
  
   Aggregator();        ThreadPool(Sint16 initial_size,
   ~Aggregator();                   const Sint8 *key,
                    Sint16 min,
                    Sint16 max,
                    struct timeval & alloc_wait,
                    struct timeval & dealloc_wait,
                    struct timeval & deadlock_detect);
  
   void started(void);        ~ThreadPool(void);
   void completed(void);  
   void remaining(int operations);  
   void put_result(CIMReference *ref);  
  
  private:        void allocate_and_awaken(void *parm,
   int _reference_count;                                 PEGASUS_THREAD_RETURN (PEGASUS_THREAD_CDECL *work)(void *),
                                  Semaphore *blocking = 0)
            throw(IPCException);
   
   
         Uint32 kill_dead_threads( void )
            throw(IPCException);
   
         void get_key(Sint8 *buf, int bufsize);
   
         inline Boolean operator==(const void *key) const
         {
            if ( ! strncmp( reinterpret_cast<Sint8 *>(const_cast<void *>(key)), _key, 16  ))
               return(true);
            return(false);
         }
         inline Boolean operator==(const ThreadPool & b) const
         {
            return(operator==((const void *) b._key ));
         }
   
         inline void set_min_threads(Sint16 min)
         {
            _min_threads = min;
         }
   
         inline Sint16 get_min_threads(void) const
         {
            return _min_threads;
         }
  
   // keep track of the thread running this operation so we can kill        inline void set_max_threads(Sint16 max)
   // it if necessary        {
   Thread _owner;           _max_threads = max;
         }
   // this is a phased aggregate. when it is complete is will  
   // be streamed to the client regardless of the state of        inline Sint16 get_max_threads(void) const
   // siblings        {
   Boolean _is_phased;           return _max_threads;
         }
   int _total_values;  
   int _completed_values;        inline void set_allocate_wait(const struct timeval & alloc_wait)
   int _total_child_values;        {
   int _completed_child_values;           _allocate_wait.tv_sec = alloc_wait.tv_sec;
   int _completion_state;           _allocate_wait.tv_usec = alloc_wait.tv_usec;
   struct timeval _last_update;        }
   time_t lifetime;  
   Aggregator *_parent;        inline struct timeval *get_allocate_wait(struct timeval *buffer) const
   // children may be phased or not phased        {
   DQueue _children;           if(buffer == 0)
   // empty results that are filled by provider              throw NullPointer();
   DQueue _results;           buffer->tv_sec = _allocate_wait.tv_sec;
   // array of predicates for events and           buffer->tv_usec = _allocate_wait.tv_usec;
   // stored queries (cursors)           return buffer;
   Array _filter;        }
   
         inline void set_deallocate_wait(const struct timeval & dealloc_wait)
         {
            _deallocate_wait.tv_sec = dealloc_wait.tv_sec;
            _deallocate_wait.tv_usec = dealloc_wait.tv_usec;
         }
   
         inline struct timeval *get_deallocate_wait(struct timeval *buffer) const
         {
            if(buffer == 0)
               throw NullPointer();
            buffer->tv_sec = _deallocate_wait.tv_sec;
            buffer->tv_usec = _deallocate_wait.tv_usec;
            return buffer;
         }
   
         inline void set_deadlock_detect(const struct timeval & deadlock)
         {
            _deadlock_detect.tv_sec = deadlock.tv_sec;
            _deadlock_detect.tv_usec = deadlock.tv_usec;
         }
   
         inline struct timeval * get_deadlock_detect(struct timeval *buffer) const
         {
            if(buffer == 0)
               throw NullPointer();
            buffer->tv_sec = _deadlock_detect.tv_sec;
            buffer->tv_usec = _deadlock_detect.tv_usec;
            return buffer;
         }
   
         inline Uint32 running_count(void)
         {
            return _running.count();
         }
   
         inline Uint32 pool_count(void)
           {
             return _pool.count();
           }
         inline Uint32 dead_count(void)
           {
             return _dead.count();
           }
   
   
         static Boolean check_time(struct timeval *start, struct timeval *interval);
   
         Boolean operator ==(const ThreadPool & p)
         {
            return operator==((const void *)&p);
         }
   
         Boolean operator ==(const void *p)
         {
            if((void *)this == p)
               return true;
            return false;
         }
   
         static void kill_idle_threads(void);
   
      private:
         ThreadPool(void);
         Sint16 _max_threads;
         Sint16 _min_threads;
         AtomicInt _current_threads;
         struct timeval _allocate_wait;
         struct timeval _deallocate_wait;
         struct timeval _deadlock_detect;
         static PEGASUS_THREAD_RETURN PEGASUS_THREAD_CDECL _loop(void *);
         Sint8 _key[17];
         DQueue<Thread> _pool;
         DQueue<Thread> _running;
         DQueue<Thread> _dead;
         AtomicInt _dying;
         static void _sleep_sem_del(void *p);
   
         void _check_deadlock(struct timeval *start) throw(Deadlock);
         Boolean _check_deadlock_no_throw(struct timeval *start);
         Boolean _check_dealloc(struct timeval *start);
         Thread *_init_thread(void) throw(IPCException);
         void _link_pool(Thread *th) throw(IPCException);
         static PEGASUS_THREAD_RETURN  _undertaker(void *);
         static DQueue<ThreadPool> _pools;
 } ; } ;
   
   
   
   
   #if defined(PEGASUS_OS_TYPE_WINDOWS)
   # include "ThreadWindows_inline.h"
   #elif defined(PEGASUS_PLATFORM_ZOS_ZSERIES_IBM)
   # include "ThreadzOS_inline.h"
   #elif defined(PEGASUS_OS_TYPE_UNIX)
   # include "ThreadUnix_inline.h"
 #endif #endif
  
 PEGASUS_NAMESPACE_END PEGASUS_NAMESPACE_END


Legend:
Removed from v.1.1.2.2  
changed lines
  Added in v.1.27

No CVS admin address has been configured
Powered by
ViewCVS 0.9.2