(file) Return to Thread.cpp CVS log (file) (dir) Up to [Pegasus] / pegasus / src / Pegasus / Common

Diff for /pegasus/src/Pegasus/Common/Thread.cpp between version 1.1.2.8 and 1.65

version 1.1.2.8, 2001/10/03 16:55:03 version 1.65, 2004/06/04 05:54:51
Line 1 
Line 1 
 //%/////////////////////////////////////////////////////////////////////////////  //%2003////////////////////////////////////////////////////////////////////////
 // //
 // Copyright (c) 2000, 2001 The Open group, BMC Software, Tivoli Systems, IBM  // Copyright (c) 2000, 2001, 2002  BMC Software, Hewlett-Packard Development
   // Company, L. P., IBM Corp., The Open Group, Tivoli Systems.
   // Copyright (c) 2003 BMC Software; Hewlett-Packard Development Company, L. P.;
   // IBM Corp.; EMC Corporation, The Open Group.
 // //
 // Permission is hereby granted, free of charge, to any person obtaining a copy // Permission is hereby granted, free of charge, to any person obtaining a copy
 // of this software and associated documentation files (the "Software"), to // of this software and associated documentation files (the "Software"), to
Line 22 
Line 25 
 // //
 // Author: Mike Day (mdday@us.ibm.com) // Author: Mike Day (mdday@us.ibm.com)
 // //
 // Modified By:  // Modified By: Rudy Schuet (rudy.schuet@compaq.com) 11/12/01
   //              added nsk platform support
   //              Roger Kumpf, Hewlett-Packard Company (roger_kumpf@hp.com)
   //              Amit K Arora, IBM (amita@in.ibm.com) for PEP#101
 // //
 //%///////////////////////////////////////////////////////////////////////////// //%/////////////////////////////////////////////////////////////////////////////
  
 #include "Thread.h" #include "Thread.h"
 #include <Pegasus/Common/IPC.h> #include <Pegasus/Common/IPC.h>
   #include <Pegasus/Common/Tracer.h>
  
 #if defined(PEGASUS_OS_TYPE_WINDOWS) #if defined(PEGASUS_OS_TYPE_WINDOWS)
 # include "ThreadWindows.cpp" # include "ThreadWindows.cpp"
 #elif defined(PEGASUS_OS_TYPE_UNIX) #elif defined(PEGASUS_OS_TYPE_UNIX)
 # include "ThreadUnix.cpp" # include "ThreadUnix.cpp"
   #elif defined(PEGASUS_OS_TYPE_NSK)
   # include "ThreadNsk.cpp"
 #else #else
 # error "Unsupported platform" # error "Unsupported platform"
 #endif #endif
  
 PEGASUS_NAMESPACE_BEGIN PEGASUS_NAMESPACE_BEGIN
  
   
 void thread_data::default_delete(void * data) void thread_data::default_delete(void * data)
 { {
    if( data != NULL)    if( data != NULL)
       ::operator delete(data);       ::operator delete(data);
 } }
  
   // l10n start
   void language_delete(void * data)
   {
      if( data != NULL)
      {
         AutoPtr<AcceptLanguages> al(static_cast<AcceptLanguages *>(data));
      }
   }
   // l10n end
  
 Boolean Thread::_signals_blocked = false; Boolean Thread::_signals_blocked = false;
   // l10n
   #ifndef PEGASUS_OS_ZOS
   PEGASUS_THREAD_KEY_TYPE Thread::_platform_thread_key = -1;
   #else
   PEGASUS_THREAD_KEY_TYPE Thread::_platform_thread_key;
   #endif
   Boolean Thread::_key_initialized = false;
   Boolean Thread::_key_error = false;
   
  
 // for non-native implementations // for non-native implementations
 #ifndef PEGASUS_THREAD_CLEANUP_NATIVE #ifndef PEGASUS_THREAD_CLEANUP_NATIVE
 void Thread::cleanup_push( void (*routine)(void *), void *parm) throw(IPCException) void Thread::cleanup_push( void (*routine)(void *), void *parm) throw(IPCException)
 { {
     cleanup_handler *cu = new cleanup_handler(routine, parm);      AutoPtr<cleanup_handler> cu(new cleanup_handler(routine, parm));
     try      _cleanup.insert_first(cu.get());
     {      cu.release();
         _cleanup.insert_first(cu);  
     }  
     catch(IPCException& e)  
     {  
         e = e;  
         delete cu;  
         throw;  
     }  
     return;     return;
 } }
  
 void Thread::cleanup_pop(Boolean execute) throw(IPCException) void Thread::cleanup_pop(Boolean execute) throw(IPCException)
 { {
     cleanup_handler *cu ;      AutoPtr<cleanup_handler> cu ;
     try     try
     {     {
         cu = _cleanup.remove_first() ;          cu.reset(_cleanup.remove_first());
     }     }
     catch(IPCException& e)      catch(IPCException&)
     {     {
        e = e;  
         PEGASUS_ASSERT(0);         PEGASUS_ASSERT(0);
     }     }
     if(execute == true)     if(execute == true)
         cu->execute();         cu->execute();
     delete cu;  
 } }
  
 #endif #endif
  
  
 //thread_data *Thread::put_tsd(Sint8 *key, void (*delete_func)(void *), Uint32 size, void *value) throw(IPCException)  //thread_data *Thread::put_tsd(const Sint8 *key, void (*delete_func)(void *), Uint32 size, void *value) throw(IPCException)
  
  
 #ifndef PEGASUS_THREAD_EXIT_NATIVE #ifndef PEGASUS_THREAD_EXIT_NATIVE
Line 99 
Line 117 
        {        {
            cleanup_pop(true);            cleanup_pop(true);
        }        }
        catch(IPCException& e)         catch(IPCException&)
        {        {
           e = e;  
           PEGASUS_ASSERT(0);           PEGASUS_ASSERT(0);
           break;           break;
        }        }
    }    }
    _exit_code = exit_code;    _exit_code = exit_code;
    exit_thread(exit_code);    exit_thread(exit_code);
      _handle.thid = 0;
   }
   
   
   #endif
   
   // l10n start
   Sint8 Thread::initializeKey()
   {
      PEG_METHOD_ENTER(TRC_THREAD, "Thread::initializeKey");
      if (!Thread::_key_initialized)
      {
           if (Thread::_key_error)
           {
                   Tracer::trace(TRC_THREAD, Tracer::LEVEL4,
                             "Thread: ERROR - thread key error");
                   return -1;
           }
   
           if (pegasus_key_create(&Thread::_platform_thread_key) == 0)
           {
                   Tracer::trace(TRC_THREAD, Tracer::LEVEL4,
                             "Thread: able to create a thread key");
                   Thread::_key_initialized = true;
           }
           else
           {
                   Tracer::trace(TRC_THREAD, Tracer::LEVEL4,
                             "Thread: ERROR - unable to create a thread key");
                   Thread::_key_error = true;
                   return -1;
           }
      }
   
      PEG_METHOD_EXIT();
      return 0;
   }
   
   Thread * Thread::getCurrent()
   {
       PEG_METHOD_ENTER(TRC_THREAD, "Thread::getCurrent");
       if (Thread::initializeKey() != 0)
       {
           return NULL;
       }
       PEG_METHOD_EXIT();
       return (Thread *)pegasus_get_thread_specific(_platform_thread_key);
   }
   
   void Thread::setCurrent(Thread * thrd)
   {
      PEG_METHOD_ENTER(TRC_THREAD, "Thread::setCurrent");
      if (Thread::initializeKey() == 0)
      {
           if (pegasus_set_thread_specific(Thread::_platform_thread_key,
                                                                    (void *) thrd) == 0)
           {
                   Tracer::trace(TRC_THREAD, Tracer::LEVEL4,
                             "Successful set Thread * into thread specific storage");
           }
           else
           {
                   Tracer::trace(TRC_THREAD, Tracer::LEVEL4,
                             "ERROR: got error setting Thread * into thread specific storage");
           }
      }
      PEG_METHOD_EXIT();
   }
   
   AcceptLanguages * Thread::getLanguages()
   {
       PEG_METHOD_ENTER(TRC_THREAD, "Thread::getLanguages");
   
           Thread * curThrd = Thread::getCurrent();
           if (curThrd == NULL)
                   return NULL;
           AcceptLanguages * acceptLangs =
                    (AcceptLanguages *)curThrd->reference_tsd("acceptLanguages");
           curThrd->dereference_tsd();
       PEG_METHOD_EXIT();
           return acceptLangs;
   }
   
   void Thread::setLanguages(AcceptLanguages *langs) //l10n
   {
      PEG_METHOD_ENTER(TRC_THREAD, "Thread::setLanguages");
   
      Thread * currentThrd = Thread::getCurrent();
      if (currentThrd != NULL)
      {
                   // deletes the old tsd and creates a new one
                   currentThrd->put_tsd("acceptLanguages",
                           language_delete,
                           sizeof(AcceptLanguages *),
                           langs);
      }
   
      PEG_METHOD_EXIT();
   }
   
   void Thread::clearLanguages() //l10n
   {
      PEG_METHOD_ENTER(TRC_THREAD, "Thread::clearLanguages");
   
      Thread * currentThrd = Thread::getCurrent();
      if (currentThrd != NULL)
      {
                   // deletes the old tsd
                   currentThrd->delete_tsd("acceptLanguages");
      }
   
      PEG_METHOD_EXIT();
   }
   // l10n end
   
   #if 0
   // two special synchronization classes for ThreadPool
   //
   
   class timed_mutex
   {
      public:
         timed_mutex(Mutex* mut, int msec)
            :_mut(mut)
         {
            _mut->timed_lock(msec, pegasus_thread_self());
         }
         ~timed_mutex(void)
         {
            _mut->unlock();
         }
         Mutex* _mut;
   };
   #endif
   
   class try_mutex
   {
      public:
         try_mutex(Mutex* mut)
            :_mut(mut)
         {
            _mut->try_lock(pegasus_thread_self());
         }
         ~try_mutex(void)
         {
            _mut->unlock();
         }
   
         Mutex* _mut;
   };
   
   class auto_int
   {
      public:
         auto_int(AtomicInt* num)
            : _int(num)
         {
            _int->operator++();
         }
         ~auto_int(void)
         {
            _int->operator--();
         }
         AtomicInt *_int;
   };
   
   
   AtomicInt _idle_control;
   
   DQueue<ThreadPool> ThreadPool::_pools(true);
   
   void ThreadPool::kill_idle_threads(void)
   {
      static struct timeval now, last = {0, 0};
   
      pegasus_gettimeofday(&now);
      if(now.tv_sec - last.tv_sec > 5)
      {
         _pools.lock();
         ThreadPool *p = _pools.next(0);
         while(p != 0)
         {
            try
            {
               p->kill_dead_threads();
            }
            catch(...)
            {
            }
            p = _pools.next(p);
         }
         _pools.unlock();
         pegasus_gettimeofday(&last);
      }
   }
   
   
   ThreadPool::ThreadPool(Sint16 initial_size,
                          const Sint8 *key,
                          Sint16 min,
                          Sint16 max,
                          struct timeval & alloc_wait,
                          struct timeval & dealloc_wait,
                          struct timeval & deadlock_detect)
      : _max_threads(max), _min_threads(min),
        _current_threads(0),
        _pool(true), _running(true),
        _dead(true), _dying(0)
   {
      _allocate_wait.tv_sec = alloc_wait.tv_sec;
      _allocate_wait.tv_usec = alloc_wait.tv_usec;
      _deallocate_wait.tv_sec = dealloc_wait.tv_sec;
      _deallocate_wait.tv_usec = dealloc_wait.tv_usec;
      _deadlock_detect.tv_sec = deadlock_detect.tv_sec;
      _deadlock_detect.tv_usec = deadlock_detect.tv_usec;
      memset(_key, 0x00, 17);
      if(key != 0)
         strncpy(_key, key, 16);
      if(_max_threads > 0 && _max_threads < initial_size)
         _max_threads = initial_size;
      if(_min_threads > initial_size)
         _min_threads = initial_size;
   
      int i;
      for(i = 0; i < initial_size; i++)
      {
         _link_pool(_init_thread());
      }
      _pools.insert_last(this);
   }
   
   
   // Note:   <<< Fri Oct 17 09:19:03 2003 mdd >>>
   // the pegasus_yield() calls that preceed each th->join() are to
   // give a thread on the running list a chance to reach a cancellation
   // point before the join
   
   ThreadPool::~ThreadPool(void)
   {
      PEG_METHOD_ENTER(TRC_THREAD, "Thread::~ThreadPool");
      try
      {
         // Set the dying flag so all thread know the destructor has been entered
         _dying++;
   
         // remove from the global pools list
         _pools.remove(this);
   
         // start with idle threads.
         Thread *th = 0;
         th = _pool.remove_first();
         Semaphore* sleep_sem;
   
         while(th != 0)
         {
            sleep_sem = (Semaphore *)th->reference_tsd("sleep sem");
            PEGASUS_ASSERT(sleep_sem != 0);
   
            if(sleep_sem == 0)
            {
               th->dereference_tsd();
            }
            else
            {
               // Signal to get the thread out of the work loop.
               sleep_sem->signal();
   
               // Signal to get the thread past the end. See the comment
               // "wait to be awakend by the thread pool destructor"
               // Note: the current implementation of Thread for Windows
               // does not implement "pthread" cancelation points so this
               // is needed.
               sleep_sem->signal();
               th->dereference_tsd();
               th->cancel();
               th->join();
               delete th;
            }
            th = _pool.remove_first();
         }
   
         while(_idle_control.value())
            pegasus_yield();
   
         th = _dead.remove_first();
         while(th != 0)
         {
            sleep_sem = (Semaphore *)th->reference_tsd("sleep sem");
            PEGASUS_ASSERT(sleep_sem != 0);
   
            if(sleep_sem == 0)
            {
               th->dereference_tsd();
            }
            else
            {
               //ATTN-DME-P3-20030322: _dead queue processing in
               //ThreadPool::~ThreadPool is inconsistent with the
               //processing in kill_dead_threads.  Is this correct?
   
               // signal the thread's sleep semaphore
               sleep_sem->signal();
               sleep_sem->signal();
               th->dereference_tsd();
               th->cancel();
               th->join();
               delete th;
            }
            th = _dead.remove_first();
         }
   
         {
            th = _running.remove_first();
            while(th != 0)
            {
               // signal the thread's sleep semaphore
   
               sleep_sem = (Semaphore *)th->reference_tsd("sleep sem");
               PEGASUS_ASSERT(sleep_sem != 0);
   
               if(sleep_sem == 0 )
               {
                  th->dereference_tsd();
               }
               else
               {
                  sleep_sem->signal();
                  sleep_sem->signal();
                  th->dereference_tsd();
                  th->cancel();
                  pegasus_yield();
   
                  th->join();
                  delete th;
               }
               th = _running.remove_first();
            }
         }
      }
   
      catch(...)
      {
      }
   }
   
   // make this static to the class
   PEGASUS_THREAD_RETURN PEGASUS_THREAD_CDECL ThreadPool::_loop(void *parm)
   {
      PEG_METHOD_ENTER(TRC_THREAD, "ThreadPool::_loop");
   
      Thread *myself = (Thread *)parm;
      if(myself == 0)
      {
         Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::_loop: Thread pointer is null");
         PEG_METHOD_EXIT();
         throw NullPointer();
      }
   
   // l10n
      // Set myself into thread specific storage
      // This will allow code to get its own Thread
      Thread::setCurrent(myself);
   
      ThreadPool *pool = (ThreadPool *)myself->get_parm();
      if(pool == 0 )
      {
         Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::_loop: ThreadPool pointer is null");
         PEG_METHOD_EXIT();
         throw NullPointer();
      }
      if(pool->_dying.value())
      {
         Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::_loop: ThreadPool is dying(1)");
         PEG_METHOD_EXIT();
         return((PEGASUS_THREAD_RETURN)0);
      }
   
      Semaphore *sleep_sem = 0;
      Semaphore *blocking_sem = 0;
   
      struct timeval *deadlock_timer = 0;
   
      try
      {
         sleep_sem = (Semaphore *)myself->reference_tsd("sleep sem");
         myself->dereference_tsd();
         deadlock_timer = (struct timeval *)myself->reference_tsd("deadlock timer");
         myself->dereference_tsd();
      }
   
      catch(...)
      {
         Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::_loop: Failure getting sleep_sem or deadlock_timer");
         PEG_METHOD_EXIT();
         return((PEGASUS_THREAD_RETURN)0);
      }
   
      if(sleep_sem == 0 || deadlock_timer == 0)
      {
         Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::_loop: sleep_sem or deadlock_timer are null.");
         PEG_METHOD_EXIT();
         return((PEGASUS_THREAD_RETURN)0);
      }
   
      while(1)
      {
         if(pool->_dying.value())
            break;
   
         try
         {
            sleep_sem->wait();
         }
         catch(IPCException& )
         {
            Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::_loop: failure on sleep_sem->wait().");
            PEG_METHOD_EXIT();
            return((PEGASUS_THREAD_RETURN)0);
         }
   
         // when we awaken we reside on the running queue, not the pool queue
   
         PEGASUS_THREAD_RETURN (PEGASUS_THREAD_CDECL *_work)(void *) = 0;
         void *parm = 0;
   
         try
         {
            _work = (PEGASUS_THREAD_RETURN (PEGASUS_THREAD_CDECL *)(void *)) \
               myself->reference_tsd("work func");
            myself->dereference_tsd();
            parm = myself->reference_tsd("work parm");
            myself->dereference_tsd();
            blocking_sem = (Semaphore *)myself->reference_tsd("blocking sem");
            myself->dereference_tsd();
   
         }
         catch(IPCException &)
         {
            Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
              "ThreadPool::_loop: Failure accessing work func, work parm, or blocking sem.");
            PEG_METHOD_EXIT();
            return((PEGASUS_THREAD_RETURN)0);
         }
   
         if(_work == 0)
         {
            Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
              "ThreadPool::_loop: work func is null.");
            PEG_METHOD_EXIT();
            return((PEGASUS_THREAD_RETURN)0);
 } }
  
         if(_work ==
            (PEGASUS_THREAD_RETURN (PEGASUS_THREAD_CDECL *)(void *)) &_undertaker)
         {
            PEG_METHOD_EXIT();
            _work(parm);
         }
  
         gettimeofday(deadlock_timer, NULL);
   
         if (pool->_dying.value() == 0)
         {
            try
            {
               _work(parm);
            }
            catch(Exception & e)
            {
               PEG_TRACE_STRING(TRC_DISCARDED_DATA, Tracer::LEVEL2,
                  String("Exception from _work in ThreadPool::_loop: ") +
                     e.getMessage());
               PEG_METHOD_EXIT();
               return((PEGASUS_THREAD_RETURN)0);
            }
            catch(...)
            {
               Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
                 "ThreadPool::_loop: execution of _work failed.");
               PEG_METHOD_EXIT();
               return((PEGASUS_THREAD_RETURN)0);
            }
          }
   
         // put myself back onto the available list
         try
         {
            if(pool->_dying.value() == 0)
            {
               gettimeofday(deadlock_timer, NULL);
               if( blocking_sem != 0 )
                  blocking_sem->signal();
   
               // If we are not on _running then ~ThreadPool has removed
               // us and now "owns" our pointer.
               if ( pool->_running.remove((void *)myself) != 0 )
               {
                  pool->_pool.insert_first(myself);
               }
               else
               {
                  Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
                     "ThreadPool::_loop: Failed to remove thread from running queue.");
                  PEG_METHOD_EXIT();
                  return((PEGASUS_THREAD_RETURN)0);
               }
            }
            else
            {
               PEG_METHOD_EXIT();
               return((PEGASUS_THREAD_RETURN)0);
            }
         }
         catch(...)
         {
           Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
                "ThreadPool::_loop: Adding thread to idle pool failed.");
            PEG_METHOD_EXIT();
            return((PEGASUS_THREAD_RETURN)0);
         }
   
      }
   
      // TODO: Why is this needed? Why not just continue?
      // wait to be awakend by the thread pool destructor
      //sleep_sem->wait();
   
      myself->test_cancel();
   
      PEG_METHOD_EXIT();
      return((PEGASUS_THREAD_RETURN)0);
   }
   
   Boolean ThreadPool::allocate_and_awaken(void *parm,
                                           PEGASUS_THREAD_RETURN \
                                           (PEGASUS_THREAD_CDECL *work)(void *),
                                           Semaphore *blocking)
      throw(IPCException)
   {
      PEG_METHOD_ENTER(TRC_THREAD, "ThreadPool::allocate_and_awaken");
   
      // Allocate_and_awaken will not run if the _dying flag is set.
      // Once the lock is acquired, ~ThreadPool will not change
      // the value of _dying until the lock is released.
   
      try
      {
         if (_dying.value())
         {
            Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::allocate_and_awaken: ThreadPool is dying(1).");
            // ATTN: Error result has not yet been defined
            return true;
         }
         struct timeval now;
         struct timeval start;
         gettimeofday(&start, NULL);
         Thread *th = 0;
   
         th = _pool.remove_first();
   
         if (th == 0)
         {
            // will throw an IPCException&
            _check_deadlock(&start) ;
   
            if(_max_threads == 0 || _current_threads < _max_threads)
            {
               th = _init_thread();
            }
         }
   
         if (th == 0)
         {
           // ATTN-DME-P3-20031103: This trace message should not be
           // be labeled TRC_DISCARDED_DATA, because it does not
           // necessarily imply that a failure has occurred.  However,
           // this label is being used temporarily to help isolate
           // the cause of client timeout problems.
   
           Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
              "ThreadPool::allocate_and_awaken: Insufficient resources: "
              " pool = %s, running threads = %d, idle threads = %d, dead threads = %d ",
              _key, _running.count(), _pool.count(), _dead.count());
            return false;
         }
   
         // initialize the thread data with the work function and parameters
         Tracer::trace(TRC_THREAD, Tracer::LEVEL4,
            "Initializing thread with work function and parameters: parm = %p",
             parm);
   
         th->delete_tsd("work func");
         th->put_tsd("work func", NULL,
                     sizeof( PEGASUS_THREAD_RETURN (PEGASUS_THREAD_CDECL *)(void *)),
                     (void *)work);
         th->delete_tsd("work parm");
         th->put_tsd("work parm", NULL, sizeof(void *), parm);
         th->delete_tsd("blocking sem");
         if(blocking != 0 )
              th->put_tsd("blocking sem", NULL, sizeof(Semaphore *), blocking);
   
         // put the thread on the running list
         _running.insert_first(th);
   
         // signal the thread's sleep semaphore to awaken it
         Semaphore *sleep_sem = (Semaphore *)th->reference_tsd("sleep sem");
   
         if(sleep_sem == 0)
         {
            th->dereference_tsd();
            Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
              "ThreadPool::allocate_and_awaken: thread data is corrupted.");
            PEG_METHOD_EXIT();
            throw NullPointer();
         }
         Tracer::trace(TRC_THREAD, Tracer::LEVEL4, "Signal thread to awaken");
         sleep_sem->signal();
         th->dereference_tsd();
      }
      catch (...)
      {
         Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::allocate_and_awaken: Operation Failed.");
         PEG_METHOD_EXIT();
         // ATTN: Error result has not yet been defined
         return true;
      }
      PEG_METHOD_EXIT();
      return true;
   }
   
   // caller is responsible for only calling this routine during slack periods
   // but should call it at least once per _deadlock_detect with the running q
   // and at least once per _deallocate_wait for the pool q
   
   Uint32 ThreadPool::kill_dead_threads(void)
            throw(IPCException)
   {
      // Since the kill_dead_threads, ThreadPool or allocate_and_awaken
      // manipulate the threads on the ThreadPool queues, they should never
      // be allowed to run at the same time.
   
      // << Thu Oct 23 14:41:02 2003 mdd >>
      // not true, the queues are thread safe. they are syncrhonized.
   
      auto_int do_not_destruct(&_idle_control);
   
      try
      {
         if (_dying.value())
         {
            return 0;
         }
   
         struct timeval now;
         gettimeofday(&now, NULL);
         Uint32 bodies = 0;
   
         // first go thread the dead q and clean it up as much as possible
         try
         {
            while(_dying.value() == 0 && _dead.count() > 0)
            {
               Tracer::trace(TRC_THREAD, Tracer::LEVEL4, "ThreadPool:: removing and joining dead thread");
               Thread *dead = _dead.remove_first();
   
               if(dead )
               {
                  dead->join();
                  delete dead;
               }
            }
         }
         catch(...)
         {
         }
   
         if (_dying.value())
         {
            return 0;
         }
   
         DQueue<Thread> * map[2] =
            {
               &_pool, &_running
            };
   
   
         DQueue<Thread> *q = 0;
         int i = 0;
         AtomicInt needed(0);
         Thread *th = 0;
         internal_dq idq;
   
   #ifdef PEGASUS_KILL_LONG_RUNNING_THREADS
         // Defining PEGASUS_KILL_LONG_RUNNING_THREADS causes the thread pool
         // to kill threads that are on the _running queue longer than the
         // _deadlock_detect time interval specified for the thread pool.
         // Cancelling long-running threads has proven to be problematic and
         // may cause a crash depending on the state of the thread when it is
         // killed.  Use this option with care.
         for( ; i < 2; i++)
   #else
         for( ; i < 1; i++)
 #endif #endif
         {
            q = map[i];
            if(q->count() > 0 )
            {
               try
               {
                  q->try_lock();
               }
               catch(...)
               {
                  return bodies;
               }
   
               struct timeval dt = { 0, 0 };
               struct timeval *dtp;
   
               th = q->next(th);
               while (th != 0 )
               {
                  try
                  {
                     dtp = (struct timeval *)th->try_reference_tsd("deadlock timer");
                  }
                  catch(...)
                  {
                     q->unlock();
                     return bodies;
                  }
   
                  if(dtp != 0)
                  {
                     memcpy(&dt, dtp, sizeof(struct timeval));
                  }
                  th->dereference_tsd();
                  struct timeval deadlock_timeout;
                  Boolean too_long;
                  if( i == 0)
                  {
                     too_long = check_time(&dt, get_deallocate_wait(&deadlock_timeout));
                  }
                  else
                  {
                     too_long = check_time(&dt, get_deadlock_detect(&deadlock_timeout));
                  }
   
                  if( true == too_long)
                  {
                     // if we are deallocating from the pool, escape if we are
                     // down to the minimum thread count
                     _current_threads--;
                     if( _current_threads.value() < (Uint32)_min_threads )
                     {
                        if( i == 0)
                        {
                           _current_threads++;
                           th = q->next(th);
                           continue;
                        }
                        else
                        {
                           // we are killing a hung thread and we will drop below the
                           // minimum. create another thread to make up for the one
                           // we are about to kill
                           needed++;
                        }
                     }
   
                     th = q->remove_no_lock((void *)th);
                     idq.insert_first((void*)th);
                  }
                  th = q->next(th);
               }
               q->unlock();
            }
   
            th = (Thread*)idq.remove_last();
            while(th != 0)
            {
               if( i == 0 )
               {
                  th->delete_tsd("work func");
                  th->put_tsd("work func", NULL,
                              sizeof( PEGASUS_THREAD_RETURN (PEGASUS_THREAD_CDECL *)(void *)),
                              (void *)&_undertaker);
                  th->delete_tsd("work parm");
                  th->put_tsd("work parm", NULL, sizeof(void *), th);
   
                  // signal the thread's sleep semaphore to awaken it
                  Semaphore *sleep_sem = (Semaphore *)th->reference_tsd("sleep sem");
                  PEGASUS_ASSERT(sleep_sem != 0);
   
                  bodies++;
                  th->dereference_tsd();
                  // Putting thread on _dead queue delays availability to others
                  //_dead.insert_first(th);
                  sleep_sem->signal();
                  th->join();  // Note: Clean up the thread here rather than
                  delete th;   // leave it sitting unused on the _dead queue
                  th = 0;
               }
               else
               {
                  // deadlocked threads
                  struct timeval deadlock_timeout;
                  Tracer::trace(TRC_THREAD, Tracer::LEVEL2,
                                "A thread has run longer than %u seconds and "
                                    "will be cancelled.",
                                Uint32(_deadlock_detect.tv_sec));
                  Logger::put_l(Logger::ERROR_LOG, System::CIMSERVER,
                                Logger::SEVERE,
                                "Common.Thread.CANCEL_LONG_RUNNING_THREAD",
                                "A thread has run longer than {0} seconds and "
                                    "will be cancelled.",
                                Uint32(_deadlock_detect.tv_sec));
                  th->cancel();
                  delete th;
               }
               th = (Thread*)idq.remove_last();
            }
         }
   
         while (needed.value() > 0)   {
            _link_pool(_init_thread());
            needed--;
            pegasus_sleep(0);
         }
          return bodies;
       }
       catch (...)
       {
       }
       return 0;
   }
   
   
   Boolean ThreadPool::check_time(struct timeval *start, struct timeval *interval)
   {
      // never time out if the interval is zero
      if(interval && interval->tv_sec == 0 && interval->tv_usec == 0)
         return false;
   
      struct timeval now , finish , remaining ;
      Uint32 usec;
      pegasus_gettimeofday(&now);
      /* remove valgrind error */
      pegasus_gettimeofday(&remaining);
   
   
      finish.tv_sec = start->tv_sec + interval->tv_sec;
      usec = start->tv_usec + interval->tv_usec;
      finish.tv_sec += (usec / 1000000);
      usec %= 1000000;
      finish.tv_usec = usec;
   
      if ( timeval_subtract(&remaining, &finish, &now) )
         return true;
      else
         return false;
   }
   
   PEGASUS_THREAD_RETURN ThreadPool::_undertaker( void *parm )
   {
      exit_thread((PEGASUS_THREAD_RETURN)1);
      return (PEGASUS_THREAD_RETURN)1;
   }
   
   
    void ThreadPool::_sleep_sem_del(void *p)
   {
      if(p != 0)
      {
         delete (Semaphore *)p;
      }
   }
   
    void ThreadPool::_check_deadlock(struct timeval *start) throw(Deadlock)
   {
      if (true == check_time(start, &_deadlock_detect))
         throw Deadlock(pegasus_thread_self());
      return;
   }
   
   
    Boolean ThreadPool::_check_deadlock_no_throw(struct timeval *start)
   {
      return(check_time(start, &_deadlock_detect));
   }
   
    Boolean ThreadPool::_check_dealloc(struct timeval *start)
   {
      return(check_time(start, &_deallocate_wait));
   }
   
    Thread *ThreadPool::_init_thread(void) throw(IPCException)
   {
      Thread *th = (Thread *) new Thread(_loop, this, false);
      // allocate a sleep semaphore and pass it in the thread context
      // initial count is zero, loop function will sleep until
      // we signal the semaphore
      Semaphore *sleep_sem = (Semaphore *) new Semaphore(0);
      th->put_tsd("sleep sem", &_sleep_sem_del, sizeof(Semaphore), (void *)sleep_sem);
   
      struct timeval *dldt = (struct timeval *) ::operator new(sizeof(struct timeval));
      pegasus_gettimeofday(dldt);
   
      th->put_tsd("deadlock timer", thread_data::default_delete, sizeof(struct timeval), (void *)dldt);
      // thread will enter _loop(void *) and sleep on sleep_sem until we signal it
   
      if (!th->run())
      {
         delete th;
         return 0;
      }
      _current_threads++;
      pegasus_yield();
   
      return th;
   }
   
    void ThreadPool::_link_pool(Thread *th) throw(IPCException)
   {
      if(th == 0)
      {
         Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::_link_pool: Thread pointer is null.");
         throw NullPointer();
      }
      try
      {
         _pool.insert_first(th);
      }
      catch(...)
      {
         Tracer::trace(TRC_DISCARDED_DATA, Tracer::LEVEL2,
             "ThreadPool::_link_pool: _pool.insert_first failed.");
      }
   }
   
  
 PEGASUS_NAMESPACE_END PEGASUS_NAMESPACE_END
  


Legend:
Removed from v.1.1.2.8  
changed lines
  Added in v.1.65

No CVS admin address has been configured
Powered by
ViewCVS 0.9.2