//%2005//////////////////////////////////////////////////////////////////////// // // Copyright (c) 2000, 2001, 2002 BMC Software; Hewlett-Packard Development // Company, L.P.; IBM Corp.; The Open Group; Tivoli Systems. // Copyright (c) 2003 BMC Software; Hewlett-Packard Development Company, L.P.; // IBM Corp.; EMC Corporation, The Open Group. // Copyright (c) 2004 BMC Software; Hewlett-Packard Development Company, L.P.; // IBM Corp.; EMC Corporation; VERITAS Software Corporation; The Open Group. // Copyright (c) 2005 Hewlett-Packard Development Company, L.P.; IBM Corp.; // EMC Corporation; VERITAS Software Corporation; The Open Group. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // THE ABOVE COPYRIGHT NOTICE AND THIS PERMISSION NOTICE SHALL BE INCLUDED IN // ALL COPIES OR SUBSTANTIAL PORTIONS OF THE SOFTWARE. THE SOFTWARE IS PROVIDED // "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT // LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // //============================================================================== // // Author: Mike Day (mdday@us.ibm.com) // // Modified By: David Dillard, VERITAS Software Corp. // (david.dillard@veritas.com) // //%///////////////////////////////////////////////////////////////////////////// //%// ---- inline implmentations of Windows IPC routines ---- #ifndef IPCWindows_inline_h #define IPCWindows_inline_h //----------------------------------------------------------------- /// Native Windows inline implementation of Mutex class //----------------------------------------------------------------- // block until gaining the lock - throw a deadlock // exception if process already holds the lock inline void Mutex::lock(PEGASUS_THREAD_TYPE caller) throw(Deadlock, WaitFailed) { if(_mutex.owner == caller) throw( Deadlock( _mutex.owner ) ); DWORD errorcode = WaitForSingleObject(_mutex.mut, INFINITE); if(errorcode == WAIT_FAILED) throw( WaitFailed( _mutex.owner) ); _mutex.owner = caller; } // try to gain the lock - lock succeeds immediately if the // mutex is not already locked. throws an exception and returns // immediately if the mutex is currently locked. inline void Mutex::try_lock(PEGASUS_THREAD_TYPE caller) throw(Deadlock, AlreadyLocked, WaitFailed) { if(_mutex.owner == caller) throw( Deadlock( _mutex.owner ) ); DWORD errorcode = WaitForSingleObject(_mutex.mut, 0); if (errorcode == WAIT_TIMEOUT) throw(AlreadyLocked(_mutex.owner)); if(errorcode == WAIT_FAILED) throw(WaitFailed(_mutex.owner)); _mutex.owner = caller; } // wait for milliseconds and throw an exception then return if the wait // expires without gaining the lock. Otherwise return without throwing an // exception. inline void Mutex::timed_lock( Uint32 milliseconds , PEGASUS_THREAD_TYPE caller) throw(Deadlock, TimeOut, WaitFailed) { if(_mutex.owner == caller) throw( Deadlock( _mutex.owner ) ); DWORD errorcode = WaitForSingleObject(_mutex.mut, milliseconds); if (errorcode == WAIT_TIMEOUT) throw(TimeOut(_mutex.owner)); if(errorcode == WAIT_FAILED) throw(WaitFailed(_mutex.owner)); _mutex.owner = caller; } // unlock the mutex inline void Mutex::unlock() throw(Permission) { PEGASUS_THREAD_TYPE m_owner = _mutex.owner; _mutex.owner = 0; ReleaseMutex(_mutex.mut); } //----------------------------------------------------------------- /// Native Windows inline implementation of Semaphore class //----------------------------------------------------------------- // block until this semaphore is in a signalled state // note that windows does not support interrupt inline void Semaphore::wait(Boolean ignoreInterrupt) throw(WaitFailed, WaitInterrupted) { DWORD errorcode = WaitForSingleObject(_semaphore.sem, INFINITE); if(errorcode != WAIT_FAILED) _count--; else throw(WaitFailed((PEGASUS_THREAD_TYPE)GetCurrentThreadId())); } // wait succeeds immediately if semaphore has a non-zero count, // return immediately and throw and exception if the // count is zero. inline void Semaphore::try_wait(void) throw(WaitFailed) { DWORD errorcode = WaitForSingleObject(_semaphore.sem, 0); if(errorcode == WAIT_TIMEOUT || errorcode == WAIT_FAILED) throw(WaitFailed((PEGASUS_THREAD_TYPE)GetCurrentThreadId())); _count--; } // wait for milliseconds and throw an exception // if wait times out without gaining the semaphore inline void Semaphore::time_wait( Uint32 milliseconds ) throw(TimeOut) { DWORD errorcode = WaitForSingleObject(_semaphore.sem, milliseconds); if (errorcode == WAIT_TIMEOUT || errorcode == WAIT_FAILED) throw(TimeOut((PEGASUS_THREAD_TYPE)GetCurrentThreadId())); _count--; } // increment the count of the semaphore inline void Semaphore::signal() { _count++; ReleaseSemaphore(_semaphore.sem, 1, NULL); } // return the count of the semaphore inline int Semaphore::count() { return(_count); } //----------------------------------------------------------------- /// Native Windows inline implementation of AtomicInt class //----------------------------------------------------------------- #if defined(PEGASUS_ATOMIC_INT_NATIVE) inline AtomicInt& AtomicInt::operator=(const AtomicInt& original) { InterlockedExchange(&_rep, original._rep); return *this; } inline AtomicInt& AtomicInt::operator=(Uint32 val) { InterlockedExchange(&_rep, val); return *this; } inline Uint32 AtomicInt::value(void) const { return ((Uint32)_rep); } inline void AtomicInt::operator++(void) { InterlockedIncrement(&_rep); } inline void AtomicInt::operator--(void) { InterlockedDecrement(&_rep); } inline void AtomicInt::operator++(int) { InterlockedIncrement(&_rep); } inline void AtomicInt::operator--(int) { InterlockedDecrement(&_rep); } inline Uint32 AtomicInt::operator+(const AtomicInt& val) { //InterlockedExchangeAdd(&_rep, val._rep); return (_rep + val._rep); } inline Uint32 AtomicInt::operator+(Uint32 val) { //InterlockedExchangeAdd(&_rep, val); return (_rep + val); } inline Uint32 AtomicInt::operator-(const AtomicInt& val) { //LONG temp_operand, temp_result; //temp_operand = InterlockedExchangeAdd((long *)&(val._rep), 0); //temp_result = InterlockedExchangeAdd(&_rep, 0); //return(temp_result - temp_operand); return (_rep - val._rep); } inline Uint32 AtomicInt::operator-(Uint32 val) { //LONG temp_operand, temp_result; //temp_operand = InterlockedExchangeAdd( (long *)&val, 0); //temp_result = InterlockedExchangeAdd(&_rep, 0); //return(temp_result - temp_operand); return (_rep - val); } inline AtomicInt& AtomicInt::operator+=(const AtomicInt& val) { InterlockedExchangeAdd(&_rep, val._rep); return *this; } inline AtomicInt& AtomicInt::operator+=(Uint32 val) { InterlockedExchangeAdd(&_rep, val); return *this; } inline AtomicInt& AtomicInt::operator-=(const AtomicInt& val) { LONG temp ; InterlockedExchange(&temp, val._rep); enter_crit(&_crit); _rep -= temp; exit_crit(&_crit); return *this; } inline AtomicInt& AtomicInt::operator-=(Uint32 val) { LONG temp ; InterlockedExchange(&temp, val); enter_crit(&_crit); _rep -= temp; exit_crit(&_crit); return *this; } inline Boolean AtomicInt::DecAndTestIfZero() { return(InterlockedDecrement(&_rep) == 0); } #endif // inline atomic int //_________________________________________________________________ // /// Native Windows implementation of the conditional semaphore //_________________________________________________________________ #ifdef PEGASUS_CONDITIONAL_NATIVE inline void Condition::signal(PEGASUS_THREAD_TYPE caller) throw(IPCException) { _cond_mutex->lock(caller); try { unlocked_signal(caller); } catch(...) { unlock_object(); throw; } _cond_mutex->unlock(); } inline void Condition::unlocked_signal(PEGASUS_THREAD_TYPE caller) throw(IPCException) { if(_cond_mutex->_mutex.owner != caller) throw Permission((PEGASUS_THREAD_TYPE)caller); // Change from PulseEvent to SetEvent, this is part of // fix to avoid deadlock in CIMClient Constructor. //PulseEvent(_condition); SetEvent(_condition); } inline void Condition::lock_object(PEGASUS_THREAD_TYPE caller) throw(IPCException) { if(_disallow.value() > 0 ) throw ListClosed(); _cond_mutex->lock(caller); } inline void Condition::try_lock_object(PEGASUS_THREAD_TYPE caller) throw(IPCException) { if(_disallow.value() > 0 ) throw ListClosed(); _cond_mutex->try_lock(caller); } inline void Condition::wait_lock_object(PEGASUS_THREAD_TYPE caller, int milliseconds) throw(IPCException) { if(_disallow.value() > 0) throw ListClosed(); _cond_mutex->timed_lock(milliseconds, caller); if( _disallow.value() > 0 ) { _cond_mutex->unlock(); throw ListClosed(); } } inline void Condition::unlock_object(void) { _cond_mutex->unlock(); } inline void Condition::unlocked_wait(PEGASUS_THREAD_TYPE caller) { unlocked_timed_wait(-1, caller); } inline void Condition::unlocked_timed_wait(int milliseconds, PEGASUS_THREAD_TYPE caller) { if(_disallow.value() > 0) { _cond_mutex->unlock(); throw ListClosed(); } if(_cond_mutex->_mutex.owner != caller) throw Permission((PEGASUS_THREAD_TYPE)caller); if(milliseconds == -1) milliseconds = INFINITE; // Change from PulseEvent to SetEvent, this is part of // fix to avoid deadlock in CIMClient Constructor // Change added next line since SignalObjectAndWait // releases the mutex _cond_mutex->_mutex.owner = 0; DWORD retcode = SignalObjectAndWait(_cond_mutex->_mutex.mut, _condition, milliseconds, false); if(retcode == WAIT_TIMEOUT) throw TimeOut(pegasus_thread_self()); _cond_mutex->lock(caller); } #endif // inline native conditional #endif // IPCWindows_inline_h