

OpenPegasus
Tracing

User Guide

OpenPegasus: Tracing Guide - 1 -

OpenPegasus provides a tracing facility that helps to investigate the cause of a problem.
For example, if requests abort, performance is reduced or unexpected responses appear,
the trace messages can indicate where and when the problem occurred.

1 Trace Configuration
The tracing of OpenPegasus can be configured by setting the following properties:

• traceLevel
• traceComponents

• traceFacility
• traceMemoryBufferKbytes

• traceFilePath

Refer to the cimconfig command man page for more information regarding
setting/unsetting of the OpenPegasus configuration properties.

The trace properties traceFilePath, traceLevel,traceComponents and traceFacility
can be changed dynamically. Hence, there is no need to re-start OpenPegasus. Only the
traceMemoryBufferKBytes property must be set before OpenPegasus starts.

1.1 traceLevel
The traceLevel property sets the required trace level. The trace level indicates the level
of information to be included in the trace output.

The following are the valid trace levels.

Level # Description
0 Tracing is switched off.
1 Severe trace and log messages (if traceComponents is set to

LogMessages)
2 Basic logic flow trace messages, minimal data detail (default)
3 Intra function logic flow and moderate data detail
4 High data detail
5 High data detail + Function entry/exit

Each successive level provides more detailed information and includes information from
the levels below. Remember to set the list of components to be traced in the
traceComponents property.

The default trace level is “0”.

1.1.1 Example:
Command to enable trace level 3 for intra function logic and moderate data detail:

cimconfig –s traceLevel=3 -c

OpenPegasus: Tracing Guide - 2 -

1.2 traceComponents
The traceComponents property allows to enable tracing selectively for a given
OpenPegasus component or a list of components. A list is a set of components separated
by a comma.

The special component “All” enables tracing for all available components.
If traceComponents is set to an empty string, tracing is switched off.

The following table lists the available components:

Authentication Authorization CIMExportRequestDispatcher
CIMOMHandle CMPIProvider CMPIProviderInterface
CQL Config ControlProvider
DiscardedData Dispatcher ExportClient
Http IndicationGeneration IndicationHandler
IndicationReceipt IndicationService L10N
Listener LogMessages MessageQueueService
ObjectResolution OsAbstraction ProviderAgent
ProviderManager Repository SSL
Server Shutdown StatisticalData
Thread UserManager WQL
WsmServer Xml XmlIO

1.2.1 Example:
Command to enable tracing of XML requests and responses.

cimconfig –s traceComponents=XmlIO –c

1.3 traceFacility
The traceFacility property specifies the target facility to which trace messages are
written:

traceFacility Description

File The trace messages are written to the file specified by
traceFilePath.

Log The trace messages are written to the logging facility
using a logging priority TRACE. (The logLevel property
must be set to TRACE.)

OpenPegasus: Tracing Guide - 3 -

Memory The trace messages are written to a memory buffer. It can
be found in a memory dump by searching for the eye-
catcher "PEGASUSMEMTRACE"
The buffer is organized in a wrap around manner. All
messages do have a CR/LF. The last message can be
identified by a trailing eye-catcher “*EOTRACE*”.

1.3.1 Example:
Command to route the trace messages into the memory buffer:

cimconfig –s traceFacility=Memory -c

1.4 traceMemoryBufferKbytes
The traceMemoryBufferKbytes property specifies the size of the memory trace facility
in kBytes (1024 bytes). The minimum is 16kB.The default is 10240kB. This property is a
planned configuration property and cannot be changed dynamically. It becomes active
after a restart of OpenPegasus.

1.4.1 Example:
Command to set the memory buffer size to 20MB in the planned configuration.

cimconfig –s traceMemoryBufferKbytes=20480 –p

1.5 traceFilePath
The traceFilePath property specifies the output file if the traceFacility is set to File.
If the file is specified using a relative path, the file is created relative to
PEGASUS_HOME.

A trace file is written for the main process of OpenPegasus and for each of the OOP
Agents. For the OOP Agents, the file is extended with: <ModuleName>.<UserName>

1.5.1 Example:
Command to set a full qualified trace file.

cimconfig –s traceFilePath=/tmp/Pegasus.trc –c

The trace file for an OOP agent may look like this:

/tmp/cimserver.trc.OperatingSystemModule.root

OpenPegasus: Tracing Guide - 4 -

2 How to use the trace
The tracing facility is designed to be used for in-depth problem determination. This may
be necessary during development, but may also be needed in production. To meet the
different requirements of these cases, the tracing facility can be tailored in

a) the level of detail using the configuration property traceLevel (1 to 5)
b) the focus on special components of OpenPegasus using the traceComponents

property
c) the target facility of the trace messages using the traceFacility property

2.1 Tailoring the amount and quality of the trace
For tailoring the amount and quality of the trace the properties traceLevel and
traceComponents are used. The traceLevel property sets the level of detail of the trace,
and the traceComponents property specifies which component of OpenPegasus should
issue trace messages at all.

2.1.1 The traceLevel
When traceLevel is set to 1 the trace contains trace messages of severe error conditions
and, if the traceComponents is set to “ALL” or includes “LogMessages”, the log
messages are also written to the trace. By the nature of this trace level, the amount and
frequency of these trace messages is very low.
The number and level of detail of the trace messages accelerates from traceLevel 1 to 5.
traceLevel 5 adds the method enter/exit messages and is the highest level of tracing.
This level can be used to trace the flow of code execution in OpenPegasus.

Refer to the traceLevel configuration property description for more information about
the levels of detail provided by the various trace levels.

2.1.2 The traceComponents
Most of the trace components specify one or several modules serving special working
units of OpenPegasus. Some trace components have special purpose traceComponents.
These special purpose traceComponents are:

Special purpose
traceComponents

Description

All All available components are traced.

DiscardedData Issues a trace message when information is
discarded or an operation is cancelled to enable
OpenPegasus to proceed.

LogMessages All messages written to the Logging Facility are
traced.

StatisticalData Prints statistical data to the trace at level 4.

This is not a valid trace component when

OpenPegasus: Tracing Guide - 5 -

OpenPegasus was compiled without statistical data.
(PEGASUS_DISABLE_PERFINST)

XmlIO Prints the complete CIM-XML messages that
OpenPegasus exchanges with clients to the trace.

2.2 Routing trace messages
The traceLevel and traceComponents properties are the filter for the traced messages.
To specify the location where the trace messages are finally written, use the
traceFacility property.

2.2.1 Writing to file
By setting the traceFacility to File, the trace messages are written to a file. The file is
specified by the traceFilePath property. The file is continuously written and is
growing constantly. The file can be removed while the OpenPegasus server is running, it
is recreated automatically.

2.2.2 Writing to memory
By setting the traceFacility to Memory, the trace messages are written to a memory
buffer. The traceFacility Memory has the following attributes:

• The buffer is allocated in a continuous memory block.
• The size of the buffer is specified by the traceMemoryBufferKbytes property.
• The messages are written in a wrap-around manner.
• All messages have a trailing CR/LF.
• The last written message has a trailing “*EOTRACE*”.
• If a message does not fit into the memory buffer, it is truncated and “*TRUNC*” is

appended.

The buffer can be found in memory dumps by searching for the eye-catcher
"PEGASUSMEMTRACE". To get the trace messages into the right order, copy the buffer into an
editor of your choice, cut the messages from the start of the buffer until “*EOTRACE*” and
append them to the end of the buffer.

2.2.3 Writing to log
By setting the traceFacility to Log, the trace messages are written to the Logging
facility with the priority TRACE. In addition the logLevel property has to be set to TRACE.
Otherwise the trace messages are discarded.

This facility combines the trace message stream with the log message stream. If the
traceComponents property is set to “All” or “LogMessages” and the traceFacility is set
to “Log”, log messages are no longer written to the trace to avoid duplicate entries.

If your OpenPegasus supports the syslog daemon, you can use the capability of the syslog
daemon to manage the trace messages. One of the capabilities of the syslog daemon is to
route messages to remote systems.

OpenPegasus: Tracing Guide - 6 -

3 Interpreting the trace output file
The following is the standard trace record output format:

<Seconds after 1970>s-<micro seconds>us:<Component Name>
[<ProcessID:ThreadID:File name: Line Number>]: <detailed information>

Some of the messages may not include the File Name and Line Number information.

The following example shows a sample trace output file:

1225804806s-137994us: ProviderManager
[26772:3086764944:DefaultProviderManager.cpp:517]: Initializing Provider
PG_OperatingSystemProvider
1225804806s-138028us: MessageQueueService
[26772:3086764944:MessageQueue.cpp:188]: MessageQueue::lookup failure - name =
CIMOpRequestDispatcher

OpenPegasus: Tracing Guide - 7 -

	1 Trace Configuration
	1.1 traceLevel
	1.1.1 Example:

	1.2 traceComponents
	1.2.1 Example:

	1.3 traceFacility
	1.3.1 Example:

	1.4 traceMemoryBufferKbytes
	1.4.1 Example:

	1.5 traceFilePath
	1.5.1 Example:

	2 How to use the trace
	2.1 Tailoring the amount and quality of the trace
	2.1.1 The traceLevel
	2.1.2 The traceComponents

	2.2 Routing trace messages
	2.2.1 Writing to file
	2.2.2 Writing to memory
	2.2.3 Writing to log

	3 Interpreting the trace output file

