

OpenPegasus
Tracing

Development Guide

OpenPegasus Tracing Development Guide - 1 -

OpenPegasus provides a tracing facility that helps in investigating the cause of a problem.
For example, if requests abort, performance is reduced, or unexpected responses appear,
trace can provide pointers to where and when the problem occurred.

To generate a useful trace for problem determination, the trace messages are categorized
in trace levels and components. The trace level defines the severity of the message and
the trace component assigns the message to a specific module or several modules serving
special working units of OpenPegasus and there are special purpose trace components.

Writing trace messages is a OpenPegasus server functionally only. Currently it is not
possible for providers to use the tracing facility.

1 When to write trace messages?
Trace statements are for debugging purpose. The information of a trace message is for a
developer or service person, a person having insight into the code of OpenPegasus. Trace
messages are utilizing the code to enable these people to understand the state of
OpenPegasus and print execution flow relevant information like:

• Locations of executions
• Return values of functions
• Error conditions of functions
• Content of variables
• Conditions and it’s evaluation
• Etc.

Trace messages are NOT enabled for multicultural support.

Log messages are in contrast to trace messages. Log messages must give system
operator/programmer information about the run-time state of OpenPegasus to enable
these people to change the runtime environment to work properly.

2 Categorize trace messages
2.1 What is the right trace level?
There are 5 trace levels for configuration but only trace level 1 to 4 can be used for
specifying the severity of a trace message.

The trace level definitions are done in Pegasus/Common/Tracer.h

Trace level 0 is reserved to switch tracing off. Trace level 5 is reserved for method
enter/exit statements. Both trace levels cannot be specified explicitly on a trace statement.
All other levels can be specified in the tracing macros using the static variables with the
definition as listed below.

OpenPegasus Tracing Development Guide - 2 -

Level # Definition
1 Tracer::LEVEL1
2 Tracer::LEVEL2
3 Tracer::LEVEL3
4 Tracer::LEVEL4

Table 1

2.1.1 Tracer::LEVEL1
Trace level 1 should be used for severe error conditions that need to be reported to an
user. For instance if the server has to discard data to be able to proceed, throws an
exception, or has to close the connection.
All log messages are also written to trace level 1, which means that there is no need to
duplicate log messages as a trace message.
As example, at the OpenSSL initialization, not enough seed data is found:

PEG_TRACE((TRC_SSL, Tracer::LEVEL1,
 "Not enough seed data in seed file: %s",
 (const char*)randomFile.getCString()));

2.1.2 Tracer::LEVEL2
Trace level 2 is for basic flow trace messages with minimal detail. These messages
should also report error conditions which might cause an error visible to the end user, but
don’t necessarily have to.
For example, after reading an HTTP request, OpenPegasus is not able to parse the content
language:

PEG_TRACE((TRC_HTTP, Tracer::LEVEL2,
 "HTTPConnection: ERROR: contentLanguages had "
 "parsing failure. clearing languages. error data=%s",
 (const char*)contentLanguagesString.getCString()));

2.1.3 Tracer::LEVEL3
Trace level 3 is for intra-function logic flow and moderate data detail. These messages
should report details of decisions made and important data of the general flow.
For example, after a connection has been established, the client IP address is written:

PEG_TRACE((TRC_HTTP, Tracer::LEVEL3,
 "Connection IP address = %s",(const char*)_ipAddress.getCString()));

2.1.4 Tracer::LEVEL4
Trace level 4 is the highest data detail. These messages should report everything needed
to be able to follow the flow.
For example:

PEG_TRACE((TRC_PROVIDERMANAGER,Tracer::LEVEL4,
 "CMPIProvider has pending operations: %s",
 (const char*)provider->getName().getCString()));

OpenPegasus Tracing Development Guide - 3 -

2.2 What is the right trace component?
At each trace macro, a trace component ID has to be specified to pool the trace messages
in domains. These domains can be one or several modules serving a dedicate purpose
within OpenPegasus or a special purpose domain serving an overall purpose.

The trace components ID’s used for the trace macros are defined as enumeration in
Pegasus/Common/Tracer.h.

The TRACE_COMPONENT_LIST[] used for the configuration option is defined in
Pegasus/Common/Tracer.cpp.

The components to be specified at the traceComponents configuration are defined in the
TRACE_COMPONENT_LIST[]. If a new trace component is needed or changed, you
have to modify both lists at the same index.

The table below is a first reference for component ID’s for dedicated functionality of
OpenPegasus. The current definitions can be found in Pegasus/Common/Tracer.h

enum TraceComponentID static char const*
TRACE_COMPONENT_LIST[]

TRC_AUTHENTICATION Authentication
TRC_AUTHORIZATION Authorization
TRC_EXP_REQUEST_DISP CIMExportRequestDispatcher
TRC_CIMOM_HANDLE CIMOMHandle
TRC_CMPIPROVIDER CMPIProvider
TRC_CMPIPROVIDERINTERFACE CMPIProviderInterface
TRC_CQL CQL
TRC_CONFIG Config
TRC_CONTROLPROVIDER ControlProvider
TRC_DISPATCHER Dispatcher
TRC_EXPORT_CLIENT ExportClient
TRC_HTTP Http
TRC_INDICATION_GENERATION IndicationGeneration
TRC_IND_HANDLER IndicationHandler
TRC_INDICATION_RECEIPT IndicationReceipt
TRC_INDICATION_SERVICE IndicationService
TRC_L10N L10N
TRC_LISTENER Listener
TRC_MESSAGEQUEUESERVICE MessageQueueService

OpenPegasus Tracing Development Guide - 4 -

TRC_OBJECTRESOLUTION ObjectResolution
TRC_OS_ABSTRACTION OsAbstraction
TRC_PROVIDERAGENT ProviderAgent
TRC_PROVIDERMANAGER ProviderManager
TRC_REPOSITORY Repository
TRC_SSL SSL
TRC_SERVER Server
TRC_SHUTDOWN Shutdown
TRC_THREAD Thread
TRC_USER_MANAGER UserManager
TRC_WQL WQL
TRC_WSMSERVER WsmServer
TRC_XML Xml
TRC_XML_IO XmlIO

Table 2

2.3 Special purpose trace components
The next table below specifies component ID’s for special purpose of the OpenPegasus:

Special purpose
TraceComponentID

Description

TRC_DISCARDED_DATA

Issues a trace message when information is
discarded or an operation is cancelled to enable
OpenPegasus to proceed.
Tracer::LEVEL1 must be used for this component.

TRC_LOGMSG
Do not use this trace component. All messages
written by the Logging Facility are automatically
written with this component.

TRC_XML_IO
This component specifies trace statements which
belongs to the XML request/response handling and
should be used only in this context.

OpenPegasus Tracing Development Guide - 5 -

3 The Trace Interface
There are 4 macros available to write a trace:

Trace macros Description

PEG_METHOD_ENTER logs a method entry message to the trace.

logs a method exit message to the trace file. PEG_METHOD_EXIT

This writes a single trace message. PEG_TRACE_CSTRING

PEG_TRACE Writes a printf()-style formatted trace message

All macros automatically add file (__FILE__) and line number (__LINE__) to the trace
message.

You have to include <Pegasus/Common/Tracer.h> to use tracing at all.

Special note on using type String

If you like to use a String object as parameter in a trace macro, you have to

1. get the CString using the method getCString()
2. cast to (const char*)

For example:

PEG_TRACE((TRC_HTTP, Tracer::LEVEL2,
 "HTTPConnection: ERROR: contentLanguages had "
 "parsing failure. clearing languages. error data=%s",
 (const char*)contentLanguagesString.getCString()));

3.1 PEG_METHOD_ENTER

SYNOPSIS

PEG_METHOD_ENTER (<traceComponent>, char* methodName);

DESCRIPTION

<traceComponent> Refers to a trace component specified in Table 2.
MethodName The name of the method being entered.

OpenPegasus Tracing Development Guide - 6 -

PEG_ METHOD_ENTER() must be placed right after the entry point of a method or
function and is generating a method enter trace statement with level 5.

EXAMPLE

PEG_METHOD_ENTER(TRC_SSL,"SSLContextManager::createSSLContext()");

3.2 PEG_METHOD_EXIT

SYNOPSIS

PEG_METHOD_EXIT();

DESCRIPTION

PEG_ METHOD_EXIT() must be placed before any exit point of a method or function
and is generating a method exit trace statement with level 5.

It can only be used if the PEG_METHOD_ENTER() was used before in the same
method/function.

EXAMPLE

void SSLContextManager::createSSLContext(…)
{
 PEG_METHOD_ENTER(TRC_SSL,"SSLContextManager::createSSLContext()");

 try
 {
 }
 catch(…)
 {
 PEG_METHOD_EXIT();
 throw MyException();
 }

 PEG_METHOD_EXIT();
 return;
}

3.3 PEG_TRACE_CSTRING

SYNOPSIS

PEG_TRACE_CSTRING(<traceComponent>,<traceLevel>, const char* traceMessage);

DESCRIPTION

OpenPegasus Tracing Development Guide - 7 -

<traceComponent> Refers to a trace component specified in Table 2.
<traceLevel> Refers to a trace level

Tracer::LEVEL1 to Tracer::LEVEL4.
traceMessage Single trace message.

This writes a single trace message at a certain trace level and component to the trace. The
message must be a single character string with a trailing ‘\0’.

EXAMPLE

PEG_TRACE_CSTRING(TRC_HTTP, Tracer::LEVEL1,
 "select() timed out waiting for the socket connection to be"
 "established.")

3.4 PEG_TRACE

SYNOPSIS

PEG_TRACE((<traceComponent>,<traceLevel>, const char* formatString,…………));

DESCRIPTION

<traceComponent> Refers to a trace component specified in Table 2.
<traceLevel> Refers to a trace level

Tracer::LEVEL1 to Tracer::LEVEL4.
formatString, ………… The printf()-style format string and it’s parameters.

PEG_TRACE() writes a printf()-style formatted trace message at a certain trace level and
component to the trace.

Note:

The parameters have to be put into a single argument for PEG_TRACE() by
putting them in additional parenthesis.

EXAMPLE

PEG_TRACE((TRC_HTTP, Tracer::LEVEL4,
 "Connection to server in progress. Waiting up to %u milliseconds "
 "for the socket to become connected.",
 timeoutMilliseconds));

4 Compiling out Trace code from Pegasus build
The trace code can be optionally removed from Pegasus at build time by defining
PEGASUS_REMOVE_TRACE (–D option).

OpenPegasus Tracing Development Guide - 8 -

	1 When to write trace messages?
	2 Categorize trace messages
	2.1 What is the right trace level?
	2.1.1 Tracer::LEVEL1
	2.1.2 Tracer::LEVEL2
	2.1.3 Tracer::LEVEL3
	2.1.4 Tracer::LEVEL4

	2.2 What is the right trace component?
	2.3 Special purpose trace components

	3 The Trace Interface
	3.1 PEG_METHOD_ENTER
	3.2 PEG_METHOD_EXIT
	3.3 PEG_TRACE_CSTRING
	3.4 PEG_TRACE

	4 Compiling out Trace code from Pegasus build

