
CIM Core Model White Paper Version 2.4

September 6, 2000 1 of 54

White Paper
DSP111 Status: Final

Copyright © "2000" Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. DMTF specifications and documents may be reproduced for uses
consistent with this purpose by members and non-members, if correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and release cited should always
be noted."

Common Information Model (CIM) Core Model

Version 2.4

August 30, 2000

Abstract

The DMTF Common Information Model (CIM) is an approach to the management of
systems, software, users, networks and more, that applies the basic structuring and
conceptualization techniques of the object-oriented paradigm.

A management model is provided to establish a common conceptual framework for a
description of the managed environment. A fundamental taxonomy of objects is
defined — both with respect to classification and association, and with respect to a
basic set of classes intended to establish a common framework.

The management model is divided into the following conceptual layers:

• Core Model—an information model that captures notions applicable to all
domains of management

• Common Models—information models that capture notions common to
particular management domains but independent of a particular technology or
implementation. The common domains include Systems, Applications, Devices,
Users, Networks, Policies and Databases.

• Extension Models—represent technology-specific extensions of the Common
Models. These models are specific to environments, such as operating systems,
or to vendors.

This document describes the DMTF CIM Core Model.

CIM Core Model White Paper Version 2.4

September 6, 2000 2 of 54

Change History
Version 0.1 December 10, 1997 Technical Committee Input, V1

Version 0.9 (Draft) June 23, 1998 Rewritten for V2
Version 0.91 (Draft) July 13, 1998 Minor changes addressing comments.

Added Appendix of Referenced Documents.
Version 2.0 (Release) August 5, 1998 Approved by Technical Committee
Versions 2.1-2.3
(Skipped)

 Skipped to keep numbering in sync with
Schema versioning.

Version 2.4 (Draft) August 30, 2000 Added text to clarify keys, naming and MOF
syntax. Updated many of the existing
object explanations and modeling
discussions. Addressed new objects in CIM
Versions 2.1 to 2.4.

Editor
Andrea Westerinen
Cisco Systems

John Strassner
Cisco Systems

For the DMTF Technical Committee and System/Devices Working Group

CIM Core Model White Paper Version 2.4

September 6, 2000 3 of 54

Table of Contents
Abstract ... 1
Change History .. 2
Editor ... 2
Table of Contents .. 3
Table of Figures ... 3

1. Introduction.. 4
2. Overview of the Core Model... 5
3. Stability of the Core Model... 7
4. UML.. 8
5. CIM's Syntax - MOF .. 9

5.1 Extending CIM's Enumerations... 12
6. Subclassing in CIM... 13
7. Naming in CIM .. 14

7.1 The Name Property .. 15
7.2 Creation Class Name .. 15

8. Properties and Associations of Managed Element .. 17
9. Properties and Associations of Managed System Ele ment.. 18
10. Logical and Physical Split .. 21
11. Logical Element's Associations... 24
12. Systems and Their Components .. 25

12.1 The Class, Computer System .. 26
13. Logical Devices .. 29
14. Properties and Associations of Services and Their Access Points .. 33
15. Products and FRUs .. 38
16. Settings and Configurations... 42

16.1 Q and A on Settings and Configurations... 47
17. Collections... 49
18. Statistics... 50
19. Mappings from Other Standards ... 52
20. Do's and Don'ts in CIM Design... 52
21. Modeling Methodology... 53
22. References ... 54

Table of Figures
Figure 1. The "Top" of the CIM Object Hierarchy…………………………………………………………………6
Figure 2. MOF Example…………………………………………………………………………………………….9
Figure 3. Naming of Systems….…………………………………………………………………………………..16
Figure 4. The Managed System Element Hierarchy……………………………………………………………….19
Figure 5. Physical Versus Logical…………………………………………………………………………………22
Figure 6. Computer System Aggregation………………………………………………………………………….27
Figure 7. Example of Remote Devices ……………………………………………………………………………30
Figure 8. Services and SAPs in Operation………………………………………………………………………...34
Figure 9. The CIM Service/SAP Classes………………………………………………………………………….36
Figure 10. The Product/FRU Object Hierarchy…………………………………………………………………...39
Figure 11. Setting, Configuration and Collection Classes…………………………………………….…………..42
Figure 12. The CIM Statistical Information Hierarchy…………………………………….……………………..50

CIM Core Model White Paper Version 2.4

September 6, 2000 4 of 54

1. Introduction
Before jumping into the many details of the Core Model, it might be wise to discuss the
relevancy of CIM, the Common Information Model.

CIM is an information model, a conceptual view of the managed environment, that attempts to
unify and extend the existing instrumentation and management standards (SNMP, DMI, CMIP,
etc.) using object-oriented constructs and design. Note that the word, “unify,” is used in the
preceding sentence, not the word, “replace.” CIM does not require any particular
instrumentation or repository format. It is only an information model – unifying the data, using an
object-oriented format, made available from any number of sources.

The value of CIM stems from its object orientation. Object design provides support for the
following capabilities, that other “flat” data formats do not allow:

• Abstraction and classification – To reduce the complexity of the problem domain, high
level and fundamental concepts (the “objects” of the management domain) are defined.
These objects are then grouped into types (“classes”) by identifying common
characteristics and features (properties), relationships (associations) and behavior
(methods).

• Object inheritance – Subclassing from the high level and fundamental objects, additional
detail can be provided. A subclass “inherits” all the information (properties, methods
and associations) defined for its higher level objects. Subclasses are created to put the
right level of detail and complexity at the right level in the model. This can be visualized
as a triangle – where the top of the triangle is a “fundamental” object, and more detail
and more classes are defined as you move closer to the base.

• Ability to depict dependencies, component and connection associations – Relationships
between objects are extremely powerful concepts. Before CIM, management standards
captured relationships in multi-dimensional arrays or cross-referenced data tables. The
object paradigm offers a more elegant approach in that relationships and associations
are directly modeled. In addition, the way that relationships are named and defined
describe the semantics of the object associations. Further semantics and information
can be provided in properties (specifying common characteristics and features) of the
associations.

• Standard, inheritable methods – The ability to define standard object behavior (methods)
is another form of abstraction. Bundling standard methods with an object’s data is
encapsulation. Imagine the flexibility and possibilities of a standard able to invoke a
“Reset” method against a hung device, or a “Reboot” method against a hung computer
system regardless of the hardware, operating system or device.

In addition, CIM’s goal is to model all the various aspects of the managed environment, not just
a single problem space. To this end, various “Common Models” have been created to address
System, Device, Network, User and Application problem spaces. These problem domains are
interrelated via associations and subclassing. They all derive from the same fundamental
objects and concepts - as defined in the Core Model.

In order to understand why a unifying model is important, consider the following scenario. A
payroll application generates an alert, due to multiple timeouts, when communicating with a
database server. The alert is forwarded to a management application and network administrator
who is monitoring alerts and events within a particular network domain, using the management
application. The administrator performs a network route analysis to display all the “managed

CIM Core Model White Paper Version 2.4

September 6, 2000 5 of 54

objects” and their percent utilization, in the path from the client application to the database
server.

The administrator discovers that one card in a network device is at 98% utilization. In
investigating further (by traversing CIM associations and exploring additional subclasses and
data objects), the network administrator finds that one port of that card has a very high traffic
rate, and its traffic is not related to the payroll application. Again following associations, the
administrator can determine the “owner” of the System currently attached to the network port. If
the owner cannot be reached, the administrator can use a standard method to “disable” the port,
thereby returning the hub to normal bandwidth levels and allowing the payroll application to
proceed.

In the preceding example, Network, Device, System and User Models were all exercised. It was
required that the models’ interrelationships and interactions be consistently defined, as well as
the correct basic objects.

2. Overview of the Core Model
The Core Model establishes a basic classification of the elements and associations of the
managed environment. The class hierarchy begins with the abstract Managed Element class
which is in turn subclassed to Managed System Element, the Product related classes, Setting
and Configuration, Collection and the Statistical Information classes. From the classes in the
Core Model, the model expands in many directions, addressing many problem domains and
relationships between managed entities.

Note: All classes defined by the DMTF in the Core and Common Models are named
using the following syntax: CIM_<Class Name>. For reading convenience, the
CIM_ prefix is omitted on class names throughout this paper, unless required for
clarity.

The significant associations in which Managed and Managed System Elements are involved are
the Statistics, Member Of Collection, Component and Dependency relationships, and the many
subclasses of these associations.

Objects in the Core Model are defined and associated as shown in Figure 1. Each area of the
Model is described in detail in the sections below. Note that all classes in the Core Model are
not included in this figure (for example, Computer System). However, they are discussed and
explained in the document.

CIM Core Model White Paper Version 2.4

September 6, 2000 6 of 54

LogicalElement

*

*
ManagedSystemElement

*

PhysicalElement

Component
*

Product
Product
Physical
Elements

ProductParentChild

*

*
*

0..1

Configuration

Setting

Element
Configuration*

*

ElementSetting

*

Setting
Context

*

*

StatisticalInformation

Statistics

*

*

Related
Statistics

*

*

*

Logical
Identity

*
*

DefaultSetting*

0..1

Collection
MemberOf
Collection

*

ManagedElementDependency

*

Other Product related classes
such as SupportAccess and FRU

are defined.

There are many subclasses of
LogicalElement beyond System

and Device.

SystemLogicalDevice

SystemDevice

Realizes

1

*

* *w

Synchronized
*
*

Figure 1. The "Top" of the CIM Object Hierarchy

Briefly summarizing the significant classes and associations of the Core Model …

• The Managed Element class roots the CIM object hierarchy and acts as a reference for
associations that apply to all entities in the hierarchy.

• Managed System Elements represent Systems, components of Systems, any kinds of
services (functionality), software and networks. The definition of "System" in the CIM
context is quite broad, ranging from computer systems and dedicated devices, to
application systems and network domains.

• Both Logical and Physical Elements are subclasses of Managed System Element.
Further definition and specification of these subclasses are provided in the Core and
Common Models. For example, System and Logical Device objects are subclasses of
Logical Element, defined in the Core Model.

CIM Core Model White Paper Version 2.4

September 6, 2000 7 of 54

• Products represent contracts between vendors and consumers, and capture information
about how the Product was acquired, how it is supported, and where it is installed.

• Settings define specific, pre-configured parameter data to be "applied" (loosely
transactionally) to one or more Managed System Elements. Their definition is very
much tied to the properties of existing objects through the Element Setting association.
Configurations aggregate Settings and Dependencies, representing a certain behavi or
or desired functional state for Managed System Elements.

• The Statistical Information class is the abstract superclass for any kind of statistical data
for a Managed Element. The Element to which the Statistical Information applies is
indicated via the Statistics association.

• Collections represent arbitrary "bags" that group Managed Elements together.
Membership can be described by the class definition and/or indicated by explicit
instantiation of the Member Of Collection association.

• Component associations establish 'part of' relationships between Managed System
Elements.

• Dependency associations describe functional dependencies (one object cannot function
without the other) or existence dependencies (the object cannot exist without the other).

CIM's Core and Common Models provide a detailed accounting of the Systems, Devices,
Networks, Users, Policies and related entities (such as software) in the managed environment.

3. Stability of the Core Model
Because the Core Model is a framework for the class structures that make up the overall CIM
Schema, it is expected to be stable. Deletions from, or modifications to, the basic structure or
content of the Core Model indicate a shift in interpretation of the classes and methodology that
underlie the schema as a whole. These types of changes would impact and cause churn to the
Common and Extension Models, and are not anticipated.

It is possible (and probable) that additional objects and properties will be defined in subsequent
releases of the Core Model. Th e addition of classes, properties and associations does not have
the same impact as deletions and modifications. Additions do not impact current Common and
Extension Models. Existing application and instrumentation code should continue to function.

CIM Core Model White Paper Version 2.4

September 6, 2000 8 of 54

4. UML
Figure 1 and many of the other figures in this document are based on UML (Unified Modeling
Language). Quoting from Appendix D of the Common Information Model (CIM) Specification,
V2.2 (June 14, 1999), “there are distinct symbols for all of the major constructs in the schema …
In UML, a class is represented by a rectangle. The class name either stands alone in the
rectangle or is in the uppermost segment … If present, the segment below the segment
containing the name contains the properties of the class. If present, a third region indicates the
presence of methods.”

Lines in the figures indicate:

• Inheritance relationships (blue lines with arrows) – Otherwise known as “is-a”
relationships

• Aggregation/component relationships (green lines with a diamond shape at the
“aggregating” end) - Otherwise known as “has-a” relationships

• Dependency and other relationships (red lines) – Some of which are “uses-a”
relationships

Inheritance relationships are not specifically labeled or named, while all other associations are
named. The cardinalities of the references on both sides of an association are indicated by
numeric values or an asterisk (*) at the endpoints of the association. The following cardinalities
are typically used in the CIM Schema:

0..1 Indicates an optional single-valued reference

1 Indicates a required, single-valued reference

1..n or 1..* Indicates either a single or multi-valued reference, that
is required

, 0..n or 0.. Indicates an optional, single or multi-valued reference

In the table, above, a “required” reference means that the object and the association MUST be
instantiated when the other referenced class is instantiated. For example, in Figure 1, the
System class has a cardinality of 1 in the System Device association. Therefore, when a Logical
Device is instantiated, a scoping System and the System Device association must also be
instantiated.

The symbol “w” is also used to label an association and can be seen in Figure 1. It indicates
that the referenced endpoint or class is “weak” with respect to the other class participating in the
association. This means that the referenced class is scoped or named relative to the other
class, and the identifying keys of the class are propagated to the “weak” class. Note that this is
not standard UML convention, but an added symbol in the CIM diagrams.

Taking the System Device association as an example, one can conclude:

• It is a component relationship, where the System object aggregates its Device “parts”

• There is one System object that must be referenced by a Device (the cardinality on
System, “1”, indicates a required, single-valued reference)

CIM Core Model White Paper Version 2.4

September 6, 2000 9 of 54

• There can be many Devices associated with a System

• Devices are scoped or named relative to the System to which they are “weak”

Occasionally, there is confusion related to the cardinalities of the Model associations.
Cardinalities define the number of INSTANCES OF THE ASSOCIATION for single INSTANCES
of the referenced classes. They do not define the total number of instances for the class as a
whole.

For example, a particular instance of a Keyboard Device is associated with a particular instance
of a Computer System, on which the keyboard is installed (and, by which it is scoped).
However, the CIM_Keyboard CLASS has many instances of many keyboards, each associated
with their own Computer Systems. Does this then mean that the association, System Device,
should be many Keyboards related to many Computer Systems? No – it defines the relationship
between an instance of Computer System and an instance of the Keyboard, not for the
Keyboard class as a whole.

5. CIM's Syntax - MOF

The following figure illustrates MOF (Managed Object Format), the syntax of the CIM Schemas.

 [Abstract, Description (
 "An abstraction or emulation of a hardware entity, that may "
 "or may not be Realized in physical hardware. ... ")]
class CIM_LogicalDevice : CIM_LogicalElement
{
. . .
 [Key, MaxLen (64), Description (
 "An address or other identifying information to uniquely "
 "name the LogicalDevice.")]
 string DeviceID;
 [Description (
 "Boolean indicating that the Device can be power "
 "managed. ...")]
 boolean PowerManagementSupported;
 [Description (
 "Requests that the LogicalDevice be enabled (\"Enabled\" "
 "input parameter = TRUE) or disabled (= FALSE). ...)"]
 uint32 EnableDevice([IN] boolean Enabled);
. . .
};

Qualifiers (Meta data)

Class Name and Inheritance

Properties

Methods

Figure 2. MOF Example

CIM Core Model White Paper Version 2.4

September 6, 2000 10 of 54

Inheritance is indicated by placing a colon and the superclass name after the class name. In the
figure above, the CIM_LogicalDevice class is defined. It subclasses from CIM_LogicalElement.

Qualifiers are mentioned, and several are used in the MOF example above. Qualifiers are meta
data, providing information about a class, property, method or reference in the CIM Schema.
The intent and purpose of most of them is quite obvious (for example, Description ("xxx"),
MaxLen (256) or Units ("Seconds")). All of the CIM qualifiers are listed and explained in Section
2.5 of the Common Information Model (CIM) Specification, V2.2 (June 14, 1999). However,
some of them need additional explanation. These are overviewed below:

• Key - Is a Boolean indicating that the property that carries the qualifier is part of the "key
structure" of a class, uniquely identifying instances of the class. The Key qualifier may
be placed on multiple properties of a class. If this is done, the combination of the values
for the Key properties must be unique across all instances of the class, in a particular
namespace.

• Weak and Propagated – The Weak qualifier is placed on a reference in an association
and indicates the class that IS "weak." When a class is weak to another class, it
includes the keys of that other class in its own key structure. These key properties are
labeled with the Propagated qualifier, and essentially act as foreign keys (from a
database perspective). For example, a disk drive can be the C: drive of a computer
system. But in an enterprise, many C: drives may exist. An instance is only completely
named when you specify the system name and then the name, "C:". This is true for any
system device. To uniquely identify a device, the system that contains the device must
be identified. So, the keys of the System object are part of the property/key structure of
CIM's Logical Device. These System keys are each labeled with the Propagated
qualifier.

Note: Propagated keys are not listed in the UML diagram, only in the MOF. It
is assumed that having the "w" (Weak) designation in the UML is sufficient to
indicate that the other class' Key properties are propagated to the Weak class.

• Min and Max - Cardinalities on association references are denoted using the Min(#) and
Max(#) qualifiers. If these are absent, the defaults apply - Min(0) and Max (NULL).
Cardinalities are defined from the perspective of the other referenced entity in an
association. They define the number of instances of one class that may be related, using
the association, to a single instance of the other class. For example, if an association
relates class A to class B, then A's cardinality indicates how many instances of A may
be associated with a single instance of B. Similarly, B's cardinality describes the
number of instances of B that may be associated with a single instance of A. Cardinality
does not dictate the number of instances of the association or of the individual classes.

• ModelCorrespondence - Is an array of strings of the form,
"<ClassName>.<PropertyName>". The qualifier may only be used on a property and
indicates that the property is related to those listed in the ModelCorrespondence array.
The relationship may be that the properties have identical enumerations, or should be
set equivalently or similarly. Another use of ModelCorrespondence is where one
property provides more detail for another. ModelCorrespondence is about any
"correspondence," not just identical enumerations. An example of "providing more
detail" occurs in the CIM System Model, in the BIOS Feature class. The Characteristics
property has a ModelCorrespondence with an array of Characteristic Descriptions. An
example of "identical enumerations" occurs in the Device Model where a Print Job's
paper and language requirements (PrintJob.RequiredPaperType and Language) have
ModelCorrespondences with what a Printer supports (Printer.PaperTypesAvailable and
LanguagesSupported).

CIM Core Model White Paper Version 2.4

September 6, 2000 11 of 54

ModelCorrespondence does not require symmetry - if PropertyA has a
ModelCorrespondence listing PropertyB, it is not required that PropertyB also have a
ModelCorrespondence. When the correspondence is only one-way (for example, this
property is set equal to that property), then the correspondence is one-way.

• Required - Is a Boolean indicating that a value must be provided for the labeled property
in any instance of the class.

• ValueMap - Is an array of strings indicating the permissible values for a property.
Strings are chosen as the basis for describing values, since all data types are
translatable to a string, and the concept of variants is not currently supported in CIM. For
example, in the Core Model, the Status Info (uint16) property of Logical Device can be
set to one of the values, "1", "2", "3", "4" or "5". As another example, the Status (string)
property of Managed System Element can be set to one of the values, "OK", "Error",
"Degraded", "Unknown", "Pred Fail", "Starting", "Stopping", "Service", "Stressed",
"NonRecover", "No Contact" and "Lost Comm". If no ValueMap is specified, the
property can take any legal values for its data type.

• Values - An array of strings related to ValueMap that describes the textual
representation of the ValueMap's contents. This qualifier is particularly useful when the
property is of type, integer. Examining the MOF below illustrates the use of this
qualifier:

 [Description (
 "StatusInfo is a string indicating whether the Logical"
 "Device is in an enabled (value = 3), disabled (value = "
 "4) or some other (1) or unknown (2) state. If this "
 "property does not apply to the LogicalDevice, the value, "
 "5 (\"Not Applicable\"), should be used. . . ."),
 ValueMap {"1", "2", "3", "4", "5"},
 Values {"Other", "Unknown", "Enabled",
 "Disabled", "Not Applicable"},
 MappingStrings {"MIF.DMTF|Operational State|004.3"}]
 uint16 StatusInfo;

In this example, the value 1 "translates" to the string "Other", 2 translates to "Unknown",
etc. If translations to other languages are desired, the Values array can be written as
Values-ll-cc, where ll and cc are language and country codes as specified by the
ISO/IEC 639 and ISO/IEC 3166 standards. (This convention of adding ll-cc to a qualifer,
to provide its information in another language, is valid for any qualifier that is defined as
"Translatable". Qualifiers are defined in the front of the Core Model MOF.)

There is one final convention that should be understood when using Values arrays - a
Values array may be specified without a ValueMap qualifier. This is only valid when the
property is a numeric data type, and results in an implicit ValueMap definition. It is
assumed that the permissible values start with 0 and increment by 1, ending with the
number of Values array entries minus 1. An example is shown in the following MOF
from the Core Model:

 [Description (
 "Enumeration indicating whether the ComputerSystem is "
 "a special-purpose System (ie, dedicated to a particular "
 "use), versus being 'general purpose'. For example, one "

CIM Core Model White Paper Version 2.4

September 6, 2000 12 of 54

 "could specify that the System is dedicated to \"Print\" "
 "(value=11) or acts as a \"Hub\" (value=8)."),
 Values {"Not Dedicated", "Unknown", "Other", "Storage",
 "Router", "Switch", "Layer 3 Switch",
 "Central Office Switch", "Hub", "Access Server",
 "Firewall", "Print", "I/O", "Web Caching", "Management"}]
 uint16 Dedicated[];

In this example, there is an implicit ValueMap qualifier enumerating the integers starting
with 0 and ending with 13.

• BitValues and BitMaps - Designed to be complementary to the Values and ValueMap
qualifiers, except that the enumerations apply to positions in a bitmapped parameter.

• OctetString - Is a Boolean indicating that the labeled property or method parameter uses
a derived data type, octet string. This qualifier is defined in "Approved Errata" to the
CIM Specification V2.2 (found at http://www.dmtf.org/spec/errata.html). There are two
forms of octet strings in CIM - an ordered uint8 array for single-valued strings, and a
string array for multi-valued properties. Both are described by adding the OctetString
qualifier to the feature.

The first four numeric elements of both of the OctetString representations are a length
field. (The reason that the "numeric" adjective is added to the previous sentence is that
the string property also includes '0' and 'x', as its first characters.) In both cases, these 4
numeric elements (octets) are included in calculating the length. For example, the octet
string X'7C' would be represented by the uint8 array, X'00 00 00 05 7C' or by the 12-
character string “0x000000057C”. The latter would be the value of one of the array
elements in a CIM array of strings. (Since CIM uses the UCS-2 character set, it requires
24 octets to encode the 12-character string.)

5.1 Extending CIM's Enumerations
The addition of values to an enumeration (a Values or ValueMap array) is not permitted in a
class or its subclasses. A subclass can restrict the permissible values, but not extend them.
The reason for this limitation is that an administrator or application querying for the value of the
enumerated property, may be querying at the superclass level. At this level, a fixed set of values
is defined. To be returned additional or more specific values would not allow for consistent and
predictable responses and processing.

Let's go through an example. The Managed System Element class has a Status property. Its
permissible values include "Unknown", "OK", "Error" and "Degraded", among others. Now a
printer, which inherits from Managed System Element, might have additional statuses such as
"Jammed", "Low Toner", etc. These values certainly are not applicable to all Managed System
Elements, nor would an application working at the very high level of Managed System Element
be prepared to deal with such extended statuses as "Low Toner", "Dial Tone Lost" or "Incoming
Call". For this reason, extensions to enumerations are not allowed.

But, all is not lost. There are four possible mechanisms to supplement the values in an
enumeration:

• Most Values and ValueMap arrays include a value of "Other". Typically, an "Other
Description" string property is also defined, with a ModelCorrespondence to the property
with the Values/ValueMap arrays. To extend an enumeration, "Other" can be used, and
any additional meaning conveyed in the "Other Description" string.

CIM Core Model White Paper Version 2.4

September 6, 2000 13 of 54

• Additional properties, supplementing an enumerated property, may be defined in
subclasses. The printer example above is actually taken from the CIM Device Model. In
the CIM_Printer class, both Printer Status and Detected Error State properties are
defined (again as enumerations) - supplementing the information in Managed System
Element's Status property. Detected Error State's Values array includes "Low Paper",
"No Paper", "Low Toner", "Jammed" and "Output Bin Full". Printer Status' Values array
includes "Idle", "Printing", "Warmup" and "Offline".

• A developer may contact the DMTF Technical Committee (technical@dmtf.org) to
recommend the addition of new permissible values for an enumeration. This would be
handled via a Change Request. If approved, the new values would appear in the next
release of the CIM Schema.

6. Subclassing in CIM
One of the strengths of the CIM Schema is its use of object-oriented design techniques.
Inheritance (via subclassing) is one of these techniques. It is a powerful concept, but often
questions arise regarding the appropriateness of subclassing - especially with respect to
associations.

Listed below are various rationale for creating subclasses. Some of these are specific to
associations since they address references and cardinalities.

The most common reason to subclass is to specialize semantics, moving from more general to
more specific semantics. For example, a Logical Device is a subclass and specialization of
Managed System Element. As another example, the association
CIM_ServiceServiceDependency subclasses from CIM_Dependency, describing the specific
dependency of one Service on another.

As part of specialization, new properties, methods or associations are defined for the subclass.
The semantics conveyed by the new constructs are not appropriate for the entire population of
the superclass, hence the subclass must be created.

When specializing associations (i.e., relationships), you often constrain their references or
restrict their cardinalities. If semantics are specialized, it is likely that the references of the
association are also specialized. For example, CIM_Dependency relates Managed System
Elements, but CIM_ServiceServiceDependency only relates instances of CIM_Service. On the
cardinalities side of the argument, a superclass may define a many-to-many relationship, but a
subclass could restrict one of the references by modifying its cardinality to "0..1".

Sometimes, subclassing is done to indicate where a specific concept is located in the model, or
what is particularly important and/or frequently instantiated in the model. Related to this, a
subclass may be defined to easily query for its instances. This is the reasoning behind the many
specializations of the Based On association in the Device Model. For example, the
CIM_LogicalDiskBasedOnPartition association describes how a "C:" drive is built on top of a disk
partition. It is a specific subclass of the Based On relationship between general Storage
Extents.

Lastly, subclasses may be defined to specifically align with and "map" an existing standard. For
example, the definition of Protected Space Extents and their relationship to Physical Extents is
described in the Device Model as a direct mapping of the SCC (SCSI Controller Command)
Specification.

CIM Core Model White Paper Version 2.4

September 6, 2000 14 of 54

7. Naming in CIM
In any instrumentation and management scheme, it is necessary to uniquely identify instances of
classes. Various means of identification exist such as:

• Simple numeric counter - for example, an incrementing counter on messages sent
between two entities

• GUIDs (globally unique identifiers)

• One or more parameters, which (when taken together) provide a unique identifier - for
example, key properties in a database table

The latter is the approach chosen by the CIM designers.

The CIM Schema is a “keyed” object model, as opposed to an object identity model (for
example, a GUID-oriented model). All class instances are uniquely named and referenced by
the class’ keys. Associations are uniquely identified by their keys, which have always included
their reference properties. References consist of a class' keys and an instance's values for
these keys. All concrete classes (those that are instantiated) must define or inherit a key
structure. If inherited, the key structure cannot be changed.

As noted in Section 5, CIM specifies the key properties of a class using the Key qualifier. In
native CIM implementations, it is required that the combination of properties with the Key
qualifier is unique across all instances of a class, within a namespace. This combination of Key
properties is the identification scheme for a native CIM class.

Since CIM is an information model, it may be implemented using various protocols and/or
repositories. Different implementations of the CIM Schema may require different identification
schemes and additional properties. For example, GUIDs may be used as one of the values in a
class' key structure. On the other hand, a directory implementation of CIM (as specified by the
DEN initiative) uses Distinguished Name as its native identification scheme, and specifies that
the combination of CIM Key properties with their individual values is an RDN (Relative
Distinguished Name). As is done in DEN, maintaining the CIM key values is critical when
communication with a native CIM implementation is required.

A question often arises regarding guidelines for class identification/naming in CIM - when should
a modeler use regular keys and when should a class also have Propagated/Weak keys? The
design is decided for almost all the CIM classes (and therefore by inheritance to their
subclasses). Most classes are weak to another, and therefore use propagated keys. For some
classes, however - for example, subclasses of CIM_Setting - the key structure is left up to the
modeler. Guidelines for designing keys are to use the Weak qualifier in an association, and then
Propagate the scoping class' keys, when an object does not exist on its own (i.e., is dependent
on another entity for existence), or needs additional scoping information to create a unique key.
For example, there may be many document1.doc files on many file systems on many
computers. This would indicate that files are weak to their file systems, and file systems be
weak to the computers on which they are hosted. So, you could have key properties that identify
the file, the file system and the computer. Indeed, this is how the keys are defined for
CIM_LogicalFile.

CIM Core Model White Paper Version 2.4

September 6, 2000 15 of 54

7.1 The Name Property
Note that many CIM classes specify Name as one of their Key properties. The Name property is
inherited from Managed System Element to all Logical and Physical Element subclasses, and is
also defined in several other classes such as Configuration and Product. In many cases, the
property is specified as a Key property, or overridden in a subclass to identify it as a key. This is
true for Systems, Services and Service Access Points. However, the Logical Device and
Physical Element classes do NOT include the Name property in their key structures.

In all cases, Name is a label for a class. However, some classes have the additional constraint
that Name be part of the unique identifier for the class. You must look at a class' definition in
order to determine its Key properties.

Some implementations may want to consistently define and use the Name property as a
"common name" or simple textual label. This is not possible since these "common names" and
labels often are not unique. Duplicate keys could result. An implementation may be forced to
use a different semantic for "Name" (i.e., not "common name") to achieve uniqueness. For
example, Name might hold an algorithmically generated OID, or object id. In this case, the
semantics of "common name" and textual label could apply to another property, such as Caption
or a new CommonName property in a subclass.

7.2 Creation Class Name
Most of the CIM classes include a Creation Class Name property in their key structure. This
provides another dimension (the class name) to an instance's key in an effort to avoid naming
collisions. Creation Class Name helps in defining a unique instance identifier, in the specific
case of instances belonging to two different subclasses of a common superclass. The number
of objects over which the Name property must be unique is limited, by the use of the Creation
Class Name, to all instances of the class being instantiated. The following example illustrates
how Creation Class Name works.

Suppose we have instances of two different subclasses of CIM_System, one is a node
participating in a cluster and the other is the cluster itself. Assume that both the computer node
and the cluster have their Name properties set to “George”. This is allowed - since the subclass
that is instantiated for a computer node is CIM_UnitaryComputerSystem; while for a cluster,
CIM_Cluster is instantiated. (Both CIM_UnitaryComputerSystem and CIM_Cluster are defined
in the CIM System Model.) The keys of a CIM_System are the CreationClassName AND the
Name properties. In this example, two instances are defined, identified as follows:

• CreationClassName = “CIM_UnitaryComputerSystem”, Name= “George”

• CreationClassName = “CIM_Cluster”, Name=”George”

This is illustrated in Figure 3.

CIM Core Model White Paper Version 2.4

September 6, 2000 16 of 54

Cluster - A kind of Computer
System representing the
aggregation of other computers
and devices into a functional whole

Participating Node

Unitary Computer System -
A kind of Computer System
representing individual nodes

Key=CIM_UnitaryComputerSystem,
George

Key=CIM_UnitaryComputerSystem,
Bill Key=CIM_UnitaryComputerSystem,

Jane

Key=CIM_UnitaryComputerSystem,
Mary

Key=CIM_Cluster, George

Figure 3. Naming of Systems

If we had only the single key property - Name - available for distinguishing the two instances,
then a collision would result from naming both of the instances with the value, "George". With
Creation Class Name, collisions of this type are eliminated, without requiring coordination among
domain administrators or instrumentation providers. The two instances are distinguished and
uniquely identified based on their Creation Class Name values.

An instance's value for Creation Class Name is constrained to be the name of a concrete class
in the instance's superclass object chain, or the name of the instance class itself. Creation Class
Name is set according to the conventions of the key algorithms of an implementation. For
example, it can be set to:

1. A constant (which is not recommended nor is it useful for distinguishing instance names)

2. The name of the first concrete class (moving down from the top of the object hierarchy)

3. The name of the last (leaf) concrete class in the hierarchy

There is a significant difference between #'s 2 and 3. For the latter (#3), an instance's key
values are defined by the leaf class' instrumentation. For the former (#2), the instance's key
values are defined by the instrumentation of the first concrete class. (A concrete class is one
that can be instantiated.) A direct result of #2 is that instances cannot be created for subclasses
that are not known to (and identified by) the instrumentation of the first concrete superclass.

CIM Core Model White Paper Version 2.4

September 6, 2000 17 of 54

Note: The topics discussed in the preceding paragraph are implementation-specific,
and are not dictated or restricted by the CIM Schema.

8. Properties and Associations of
Managed Element

In CIM V2.3, the object hierarchy became rooted by Managed Element. Before V2.3, there were
various unrooted objects at the top of individual hierarchies, with associations tying the classes
together. A rooted hierarchy is very useful to describe relationships that span all the entities in
the CIM Schemas. Examples of these relationships are CIM_Dependency,
CIM_MemberOfCollection and CIM_Statistics.

Since Managed Element is such a high level, abstract class, few properties could be defined as
appropriate to all CIM elements. The current properties are Caption (a short textual description)
and Description (a more detailed explanation of an instance). However, even these properties
are not appropriate for a few subclasses of Managed Elements that are designed to be
"lightweight." For example, the class CIM_UnitOfWork in the DAP Model recommends that
Description not be used in order to reduce the amount of data in an instance. This is allowed,
since neither of the properties of Managed Element is required. The Caption and Description
properties can be left NULL.

It should also be noted that Caption and Description may be overridden in subclasses (using the
Override qualifier) to indicate specific information that should be provided in these properties or
to attach additional qualifiers such as MappingStrings. The MappingStrings qualifier indicates
where other standards (such as DMI MIFs and SNMP MIBs) address the same information as
conveyed by the labeled feature.

With the move to root the object hierarchy, one existing association was also moved up and
references it - CIM_Dependency. Before CIM V2.3, Dependency only referenced Managed
System Elements. However, it is very reasonable and desirable to model dependencies
between all the managed entities. There are no constraints on dependency relationships in the
Core Model. Any object can be dependent on any other object. There are however a number of
distinguishable “flavors” of dependency, notably existence and functional dependency.

Some subtypes and examples of existence dependency are the Realizes association (between a
Logical Device and its basis in hardware / Physical Elements) and the Hosted Service
association (between a Service and a System on which it resides). A subtype and example of
functional dependency is the Service SAP Dependency association – describing that a Service
uses an Access Point to provide its underlying functionality.

A common source of misunderstanding related to the CIM_Dependency association is which
reference actually IS the dependent one. The answer is that the entity referenced as Dependent
is the one that IS dependent (like a Dependent on your tax return). The Antecedent reference is
the one that is independent.

With several associations on Managed Element, an attempt was also made in CIM V2.3 to root
existing associations - subclassing from the three relationships on Managed Element
(Dependency, Member Of Collection and Statistics). For example, it is reasonable and
straightforward to subclass CIM_CollectedMSEs from CIM_MemberOfCollection. Yet, if you
examine the MOF, you find many examples of classes which semantically should subclass from
one of these associations, but do not. One example is CIM_CollectedCollections, which should
subclass from CIM_MemberOfCollection. It currently subclasses from nothing. The reason that
these associations are not subclassed is that their reference names are not the same.

CIM Core Model White Paper Version 2.4

September 6, 2000 18 of 54

Similar to a class inheriting a property with a particular name, associations inherit references
with particular names - and these names typically also are defined as Key properties. You
cannot override these names - or else key structure and manipulation of the associations
become a nightmare. For example, with unchanging reference names, it is easy to query for all
the Dependent objects of an instance, even if related via subclasses of the Dependency
association. It is much harder to query and manipulate all the possible references if the name
"Dependent" could be overridden to be "DependentService", "DeviceDependency" or
"ElementA". Similarly, you have key construction and manipulation issues if the Key property is
referred to as "Dependent" in the superclass, but "ElementA" in the subclass.

Therefore, where reference names match, association subclassing was added to the Model.
Where names do not match, the CIM designers felt it better to maintain current naming, and
consistency for existing instrumentation and applications. This will be corrected in a future major
release of the Schema.

As regards the associations, Statistics and Member Of Collection, these are fairly obvious in
their intent. They relate a Managed Element to another entity holding instance-level statistics, or
acting as a set or bag, grouping the Managed Elements into it.

9. Properties and Associations of
Managed System Element

Managed System Elements represent Systems (Computer, Network, Storage Library and
Application Systems), the software that runs on them, the functionality provided by them, and
abstractions of the hardware that compose them. The subclasses of Managed System Element
deal with everything related to “systems management” today. Its high level concepts are shown
in Figure 4, below.

CIM Core Model White Paper Version 2.4

September 6, 2000 19 of 54

LogicalElement

*
ManagedSystemElement

Name: string
Status: string
InstallDate: datetime

PhysicalElement

CreationClassName: string [key]
Tag: string [key]
Manufacturer: string
Model: string
SKU: string
SerialNumber: string
Version: string
PartNumber: string
OtherIdentifyingInfo: string
PoweredOn: boolean
ManufactureDate: datetime

SystemComponent

Component*

*

*

Logical
Identity

*
*

Synchronized

System

CreationClassName: string [key]
Name: string [key]
NameFormat: string
PrimaryOwnerName: string
PrimaryOwnerContact: string
Roles: string[]

*
*

CreationClassName: string [key]
DeviceID: string [key]
PowerManagementSupported: boolean
PowerManagementCapabilities: uint16[]
Availability: uint16
AdditionalAvailability: uint16
StatusInfo: uint16
LastErrorCode: uint32
ErrorDescription: string
ErrorCleared: boolean
OtherIdentifyingInfo: string[]
IdentifyingDescriptions: string[]
PowerOnHours: uint64
TotalPowerOnHours: uint64
MaxQuiesceTime: uint64

SetPowerState([IN] PowerState: uint16, [IN] Time: datetime): uint32
Reset(): uint32
EnableDevice([IN] Enabled: boolean): uint32
OnlineDevice([IN] boolean Online): uint32
QuiesceDevice([IN] boolean Quiesce): uint32
SaveProperties(): uint32
RestoreProperties() uint32

LogicalDevice

SystemDevice

Realizes
1

*

*

*w

Also have the HostedService and
HostedAccessPoints associations,
relating Systems to the Services
(functionality) that they provide

Inherits from
ManagedElement

Figure 4. The Managed System Element Hierarchy

Determining the properties of a generic object, from which all Systems and their components
subclass, is a difficult task. Much greater property-related detail is provided in the subclasses of
Managed System Element in the Common Models for Systems, Devices, Networks and
Applications. In the Managed System Element class, only a few properties can reasonably be
defined:

• Name

• Description and its shorter form, Caption (Inherited from Managed Element)

• Install date (if one exists)

CIM Core Model White Paper Version 2.4

September 6, 2000 20 of 54

• Status – An enumeration defining the values: Unknown, OK, Error, Degraded, Pred Fail
(failure predicted), Starting, Stopping, Service (i.e., being serviced/in maintenance),
Stressed (for example, overloaded or overheated), NonRecover (non-recoverable error
occurred), No Contact (entity is known to exist via other means but no management
contact has been made), Lost Comm (communication to the entity has been lost)

The last property, Status, describes both operating and non-operational states for a Managed
System Element. For example, the statuses, "OK", "Error", "Degraded", "Stressed" and "Pred
Fail", all denote that the entity is functioning, although perhaps in a non-perfect state. On the
other hand, the statues, "Starting", "Stopping", "Service" and "NonRecover" indicate that the
entity is not currently operational and is not performing its normal functions. The remainder of
the property values deal with lack of information. The last two statuses ("No Contact" and "Lost
Comm") could all be grouped under the catch-all, "Unknown". However, these values provide
additional information on why Status is "Unknown".

In examining the Status property, one oddity may be noticed - that the enumeration is a 10-
character string and not a uint16 data type. The next question is usually "why is this?" The
Status property was not converted into an enumeration in moving to CIM V2.x since existing
V1.0 implementations relied on it. These implementations had already standardized on a "short
string" representation (i.e., a 10 character string). So, the CIM designers felt that it was more
important to be consistent with existing implementations, than to move to an unsigned integer
data type. This is especially true, since the semantics were not affected.

That Component and Dependency associations exist between Managed System Elements was
mentioned earlier in this document. (The Dependency association is inherited from Managed
Element.) These association types — like many of the Core Model classes — are abstract. This
means that there are no direct instances of these classes. Instances must always belong to one
of their subclasses. The relationships between subclasses of the Core Model are mainly defined
by descendents of these abstract Component and Dependent associations.

Element composition (the Component association) is considered a fundamental relationship of
which all Managed System Elements are capable. Expressed another way, any Managed
System Element may be described in terms of other Elements, of which it is “composed”.
However, the Component association, on its own, is too abstract to convey any specific
information. Its main significance is to introduce an association type that can be subtyped to
establish concrete relationships between descendent classes of Managed System Element.
Programmers, schema designers, and browsers can then reasonably query, “What composition
relationships does this Element have with other Elements?” The answer is found by locating all
subclass of the CIM_Component association for the element of interest.

There is one important specialization of the composition association in the Core schema: the
System Component association — relating a System to the Managed System Elements (both
logical and physical) of which it is composed. This association is then further subclassed by the
System Device relationship, to indicate that Logical Devices are parts of Systems - and indeed
are Weak to those Systems.

CIM Core Model White Paper Version 2.4

September 6, 2000 21 of 54

10. Logical and Physical Split
The elements that make up a System can be:

• Physical Elements, occupying space and conforming to the elementary laws of Physics.
The Physical Element class represents any component of a System that has a physical
identity - it can be touched or seen.

• Logical Elements, representing abstractions used to manage, configure and coordinate
aspects of the physical or software environment. Logical Elements typically represent
Systems themselves, System components, System capabilities and software.

The distinction between Logical and Physical Elements is fundamental to the structure of the
Core Model. The principal distinguishing feature of a Physical Element is that it cannot have a
“realization” (per Webster’s definition of realization, it can not be “brought into being”). It can be
composed of parts, but there is no sense in which, for example, a system enclosure is “realized”
(or “brought into being”) by a piece of molded plastic; it simply is a piece of molded plastic.

Logical Elements (especially Logical Devices) can be “realized” by installing Physical Elements
and/or software. For example, it is not possible to attach a label to a modem. It is only possible
to attach a label to the Card that “realizes” the modem. The same card could also “realize” a
LAN adapter. These tangible Managed System Elements have a physical manifestation of some
sort. However, the physical manifestation is very different than its management aspects and
attributes. The latter are addressed by the Logical Elements, realized from the physical, usually
accessed via software.

Figure 5 visualizes the discussion of the previous paragraph.

CIM Core Model White Paper Version 2.4

September 6, 2000 22 of 54

S
e

ria
l

DSUB

Network
Adapter

POTSModem

Card - A kind of Physical Package;
With many Physical Components/parts

Modem - A concept; A kind
of Logical Element; With
unique mgt features

Network Adapter - A concept;
A kind of Logical Element;
With unique mgt features

Realizes relationship
describes the “realization”
of a Logical Element in
hardware

Figure 5. Physical Versus Logical

Note that it is not required that a Managed System Element be a discrete component. For
example, it is possible for a single Card—which is a type of Physical Element—to host more
than one Logical Device. Each of these Devices 1 would be associated with the Physical Element
representing the Card by the “Realizes” relationship.

It must be understood that this fundamentally dualistic view of the systems management
universe is just a view, and must be accepted and used as such. At both this very high level of
abstraction and at lower levels, any particular modeling decision is likely to be a compromise
between alternatives. Anyone making use of the schema, particularly in the context of extending
or programming against it, must understand these compromises to avoid misunderstanding or
introducing confusion into the schema itself.

Regarding properties (and referencing Figure 4 on page 18), the Logical Element class has
none. It is a very abstract class, used to represent the management and configuration of
hardware (in operation) and software. On the other hand, the Physical Element class has
several properties, inherited by all Physical Model subclasses:

• Name (Inherited from Managed System Element)

• Description and Caption (Inherited from Managed Element)

1 The noun, Device, when capitalized refers to the Logical Device class. It is a shorthand mechanism for
identifying the class.

CIM Core Model White Paper Version 2.4

September 6, 2000 23 of 54

• Manufacturer, Manufacture Date

• Model, Version, Part Number

• SKU (stock keeping unit number)

• Serial Number

• Powered On boolean

• Tag – A string property that acts as the “key”, uniquely identifying the object within the
CIM Schema

• Other Identifying Info - A string property that can be used for additional data, beyond
that stored in the Tag property, to identify a Physical Element. One example where this
property is used occurs if both an asset tag and a bar code exist on a Physical Element.
One's value is chosen for the Tag property and the other's data can be stored in the
Other Identifying Info property.

A few words are needed related to the Tag property, which is part of the key structure for
Physical Elements (along with Creation Class Name). Tag is a free-form string that can hold
asset tag information or other data that uniquely identifies the Physical Element. One may ask
why a simple string key structure is defined for Physical Element - or, asked in another way, why
no scoping/containment relationships are used to define keys. A single key structure,
independent of all containment relationships, is defined because Physical Elements can be
removed from their containing Packages and continue to exist. They must be identified
independently of their containers. (However, containment relationships are critical and are
identified as associations in the Physical Model.) For example, removable media or PCMCIA
hardware continues to exist and is identifiable, even when not inserted into a Computer System
or other Package.

A follow-on question is typically "why are not lower-level physical components weak to specific
packaging elements like Chassis or Card?" The answer is based on the fact that a class can
only be Weak to one other object/class. Take Physical Connectors as an example. They can be
located on Chassis or Cards (kinds of Physical Packages), but also on cables (Physical Links).
Therefore, Connectors would either have to be weak to both (invalid in the current specification)
or neither. The “neither” option was selected. A single, asset-identifying string (the Tag
property, with the additional clarification of Creation Class Name) is used as the Physical
Element key.

CIM Core Model White Paper Version 2.4

September 6, 2000 24 of 54

11. Logical Element's Associations
Two general relationships are defined for Logical Elements - the Synchronized relationship and
Logical Identity. Synchronized is very straightforward, and is considered first. Synchronized
indicates that one element may be aligned with another, perhaps only at a particular point in
time. Examples of Elements that are synchronized are replicated databases or data stores,
clocks and "snapshoted" files. The relationship is on Logical Element since almost any logical
entity may be synchronized with another. However, since cardinalities are many to many, the
association indicates that not all elements are synchronized. The "0" part of the cardinality
indicates that it is not necessary to instantiate the relationship for any specific Logical Element.

Properties of the Synchronized association are:

• WhenSynced - A date/time when the referenced Elements were last synced

• SyncMaintained - A Boolean indicating that synchronization is automatically maintained

The Logical Identity relationship is a bit more ethereal. It describes that a real world entity can
have different aspects that would be likely be modeled using multiple inheritance. Two
examples of the semantics of multiple inheritance occur in the Networks and Devices domains,
and are described by subclasses of Logical Identity - Device Identity (in the CIM Device Model)
and Endpoint Identity (in the CIM Network Model). Examining the use of these Identity
subclasses in detail will help to explain the concept.

When managing Devices, it is usually necessary to represent both the 'bus' and the 'functional'
aspects of the Element. For example, a Device could be both a PCI Device (or a USB Device),
as well as a CIM_Keyboard. It would be very wrong (and would make the Device object
unwieldy) to try to combine all the details of the different hardware bus protocols (PCI, USB, I2O,
VME, etc.) into the basic Device class. Therefore, the Device Identity association was created to
describe these different aspects of a Logical Device.

Similar to Device Identity, protocol endpoints (addresses and protocol-specific IDs) are related in
an Endpoint Identity association. This association ties together the "LAN" and the protocol-
specific aspects of an address. Using basically the same text as above ... it would be very
wrong (and make the Protocol Endpoint object unwieldy) to try to combine all the details of the
different network protocols (DHCP, DNS, BGP, SNMP, etc.) into the basic Endpoint class. So,
the Endpoint Identity association was defined to describe these different aspects of a Protocol
Endpoint.

In addition, it sometimes occurs that an Element plays multiple functional roles that are not
distinguished in hardware. For example, in the Device world, a Fibre Channel adapter might
have aspects of both a CIM_NetworkAdapter (its fiber channel network aspects) and a
CIM_SCSIController (its use to access storage devices in a Storage Area Network). Describing
this semantic is another use of the Device Identity association.

The concepts conveyed by Logical Identity and its subclasses (basically, multiple inheritance)
are very powerful. Management applications should routinely query for any instances of the
relationship associated with a Logical Element. For example, the reason that the CIM_Keyboard
object may have an Error status is because its PCI controller is misconfigured or malfunctioning.
Or, the reason that an IP address lease did not renew may be related to its DHCP endpoint
configuration. To determine this, the Logical Identity association would be traversed and the
"other" aspects of the Keyboard or the IP address examined.

On the instrumentation side, developers may be wondering when to use the Logical Identity
subclasses. Whenever multiple objects are instantiated as different aspects of the same

CIM Core Model White Paper Version 2.4

September 6, 2000 25 of 54

underlying entity (and typically have matching identifying information such as a PCI or USB ID,
or a network address) - these objects are candidates to be related by a subclass of the Logical
Identity association.

Note: If you examine the class structure for Logical Device and Unitary Computer System (in
the CIM System Model), it may have been better to model all the power-related features of a
system or device as a separate class, related via a subclass of Logical Identity - than to embed
all the power management features in the base Device and Unitary Computer System classes.
This would have afforded more modeling flexibility and reduced the size of the Computer System
and Device objects. However, at the time that power management was added to these classes,
these associations were not available in the Schemas.

12. Systems and Their Components
The System subclass of Logical Element aggregates Managed System Elements. For any
subclass of System, there is a basic set of Elements whose instances can or must be
aggregated. Systems represent individual entities that can be uniquely identified and are more
than the sum of their parts. A System operates as a functional whole, and provides scope to its
aggregated components.

Whenever compound entities can be identified in the managed environment, and these entities
provide some functionality as a cooperating “whole,” the element that represents the “whole” is a
good candidate for modeling as a subclass of System. Current subclasses are Computer
System, Storage Library, Admin Domain and Application System (from the Core, System,
Network and Application Models, respectively).

Note: The definition and subclasses of CIM_System are not limited to computer
systems, but are much more general.

The relevant associations and properties of the System class are shown in Figure 4, above.
Systems have the following properties:

• Name – A string property that is combined with the Creation Class Name to create the
System key (Inherited from Managed System Element and overridden to be a key
property)

• Name Format – A string that identifies the heuristic used to define the System Name (for
example, “IP” address)

• Primary Owner Name and Primary Owner Contact

• Roles - A string array representing the functions and characteristics of the System in the
enterprise

The class' associations focus on the Component relationship - since Systems are essentially
aggregations but viewed as functional "wholes."

The individual elements that make up a System can be enumerated using a number of different
strategies. A function that lists the components of a System will start with a System object. Then,
the System Component association is traversed to discover the comprising entities. The listing
function must select the components to be enumerated based on the type of picture of the
System to be presented. There are any number of alternative views depending on the
circumstances at hand:

CIM Core Model White Paper Version 2.4

September 6, 2000 26 of 54

• If a list of the physical components is required, the function will list all the System
Components that are Physical Elements.

• If the logical components of the System are required, the components of type Logical
Element will be selected.

• Selecting Logical Elements that are not “weak to” (or scoped by2) any other Logical
Elements would return top-level objects.

• Low-level elements (typically, a device-level view) could be constructed by selecting
Logical Elements that subclass from Logical Device and/or have a Physical Element
realization.

• Dependency or configuration trees could be constructed by pursuing suitable
associations.

12.1 The Class, Computer System
Computer System is a subclass of System and is a special collection of Managed System
Elements. It is part of the Core Model since the various types of computers - general purpose as
well as dedicated systems - cross all the Common Models. A Computer System provides
compute capabilities, hosts services, and aggregates devices, firmware and software.

Computer System serves as an abstraction layer and association definition point for the specific
classes (Unitary Computer System, Cluster and Virtual Computer System) derived from it (all
defined in System Model). It includes component associations to other Managed System
Elements, such as Operating System, Logical Devices and File Systems, that execute on or are
given scope by the Computer System. Note that the majority of these associations are defined
in the CIM System Model, whose focus is on modeling computer systems and storage libraries.
None of the associations are mandatory from the System's perspective, but could be defined if
necessary to manage the System.

The view of a Computer System as an aggregation point, can be seen in the following figure.

2 Systems are a type of Top Level Object (TLO) in the CIM Schema. Per the Common Information Model
(CIM) Specification, V2.2 , Section 5, Top Level Objects “should have relevance in an enterprise context.”
They “must have the possibility of an enterprise-wide, unique key. An example may be a computer’s IP
address in a company’s enterprise-wide IP network. The goal of the TLO concept is to achieve
uniqueness of keys in the model path portion of the object name.” TLOs are scoping objects for any
classes that are defined to be weak with respect to them. Scoping objects propagate their keys to weak
objects.

CIM Core Model White Paper Version 2.4

September 6, 2000 27 of 54

System
Components System

Component

System Component

System
 Components

System
ComponentFS

FS

Compound
Functionality

OS +

FileSystems + Files
+ SoftwareElements

OS

Figure 6. Computer System Aggregation

Especially when the Computer System is "dedicated," information such as Operating System
may not be critical to the system's management. In many dedicated systems, the Operating
System may be in firmware, or have very limited functionality. Obviously, however, some
software boots the system and handles its operation. This is the essence of the definition of
Operating System in the System Model, but more sophisticated implementations are also
supported. Quoting from the System MOF:

"An OperatingSystem is software/firmware that makes a "
"ComputerSystem's hardware usable, and implements and/or "
"manages the resources, file systems, processes, user "
"interfaces, services, ... available on the ComputerSystem."

When examining the Computer System class, developers often ask how specific systems should
be instantiated and/or subclassed. Many schema designers are tempted to subclass a router
“system” or a network printer from Computer System. These entities seem to be special kinds of
computer systems, dedicated to routing or to printing. However, what happens when a general-
purpose computer gets a new Service – that supports and provides routing or print capabilities?
Should that instance of Computer System be instantiated as a router or print “system” instead?
Probably not – since the System is not dedicated. Computer Systems are distinguished by
having compute hardware as Logical Devices (processor and memory) and the capability to run
an OS (even if it is limited, vendor-specific firmware). Systems aggregate their components and
host Services and Service Access Points. These aspects of a Computer System do not change
just because the “System” is dedicated to routing or printing.

CIM Core Model White Paper Version 2.4

September 6, 2000 28 of 54

Before panicking, however, be assured that the CIM designers understood the value of labeling
a System as "dedicated." Therefore, a Dedicated enumerated array property was added to the
definition of CIM_ComputerSystem, to provide this information. In fact, there are three new
properties on Computer System (beyond those inherited from System), as well as an Override of
the existing Name Format property. Each of the properties is explained below:

• Other Identifying Info - A string array that can be used for additional data, beyond that
stored in the Name property, to identify a Computer System. One example where this is
used occurs when both a Fibre Channel World-Wide-Name (WWN) and a "System
Name" exist for a Computer System. One's value is chosen for the Name property
(likely "System Name") and the other's data can be stored in the Other Identifying Info
array.

• Identifying Descriptions - A string array that has a ModelCorrespondence with Other
Identifying Info. There is a correspondence between the entries at the same index in
both arrays. The Description strings provide explanations and details behind the values
in the Other Identifying Info array.

• Dedicated - An array of enumerated integer values, where the permissible values are:
"Not Dedicated", "Unknown", "Other", "Storage" (for example, a storage array or network
attached storage platform), "Router", "Switch", "Layer 3 Switch", "Central Office Switch",
"Hub", "Access Server", "Firewall", "Print", "I/O" (for example, an Infiniband I/O system
attached to and supporting multiple Computer Systems), "Web Caching" and
"Management" (for example, a Service Processor or management controller in a high-
end server).

• Name Format - An enumeration (overriding the free-form string property of
CIM_System) defining the mechanism by which the computer Name is determined.
Because computers may have several instrumentation packages and may be
discovered via different mechanisms and technologies, it is likely that one system could
have multiple Names. This property attempts to distinguish between the different
mechanisms that are used to name a computer. Its values are:

Other
IP - Identification is related to IP-based networking information such as a fully

qualified hostname or a permanent IP address that is assigned to the System
Dial - Identification is based on relatively unchanging information such as a call-

back number or other identification of the Owner of a System
HID (Hardware ID) - Identification is based on a processor, chassis,

cryptographic hardware or other hardware ID
NWA (Network Address) - Identification is determined by some "other"

network address than is specified in the current enumeration
HWA (Hardware Address) - Identification is based on the hardware address of

the main network interface of the Computer System
X25 - Identification is related to X.25-based networking information
ISDN (Integrated Services Digital Network) - Identification is related to ISDN-

based networking information
IPX (Internetwork Packet Exchange) - Identification is related to IPX-based

networking information
DCC (Data Country Code) - Identification is based on a network address using

an ISO DCC format
ICD (International Code Designator) - Identification is based on a network

address using an ISO ICD format
E.164 - Identification is based on an E.164 format, a telephone number-like

address used in ISDN

CIM Core Model White Paper Version 2.4

September 6, 2000 29 of 54

SNA (Systems Network Architecture) - Identification is related to SNA-based
networking information

OID/OSI (Object ID) - Identification is based on an Object ID

Before closing this discussion of Computer Systems, one last item needs to be clarified. It
appears that there are two ways to describe the packaging of a subclass of Computer System,
the Unitary Computer System. (Unitary Computer Systems represent personal computers,
handhelds, servers, etc. - basically computers that are directly realized due to the installation of
hardware and software.) Either the System Component association in the Core Model, or the
Computer System Package relationship defined in the CIM Physical Model could be used to
describe the enclosures of a Unitary Computer System. There is a difference between these
associations since one is a Component and the other a Dependency relationship. It is correct to
describe an enclosure as "part of" a Computer System, although it is a bit of stretch. The
packaging of a Computer System does not affect the System itself. It could be packaged in a
variety of different ways and form factors and still be a Computer System. It is more correct to
say that the System is realized by the components contained within the enclosure - which are
the semantics of the Computer System Package association.

13. Logical Devices
Important components of a System are its devices. These are represented as subclasses of
Logical Device. There are many subclasses and associations, and much detail defined and
described in the CIM Device Model.

A Logical Device provides an abstraction of hardware, has a distinct function (such as a modem
or keyboard) and participates in providing or implementing Services and Service Access Points.
Actually, Devices and Services are closely related on the basis of "functionality." Devices (i.e.,
hardware) provide certain functionality and may be required in the implementation of a Service
or an Access Point. To visualize this, imagine having a networking service without a LAN
Adapter to interface to the network. Although Services "officially" represent the CIM semantic of
functionality, it is assumed that all Devices have a basic function that they perform. This could be
modeled as a separate Service, but is typically rolled into the definition of the Device.

Any characteristics of a Logical Device that are used to manage its operation or represent its
current configuration are contained in, or associated with, the Device object. Examples of the
“operational” properties in a Printer Device would be Paper Sizes Supported, Languages
Supported, Job Count Since Last Reset and Time of Last Reset. Examples of the “current
configuration” properties of a Sensor Device would be threshold settings. These are all
properties of subclasses of Logical Device, defined in the CIM Device Model. In addition,
various potential configurations can exist for a Device. These potential configurations could be
contained in Setting objects and associated with the Device. (Setting and Configuration objects
are explained in a later section of this document. Refer there for more information.)

As stated above, Logical Devices abstract hardware - not the touching/seeing parts of hardware
(which are modeled as Physical Elements), but the logical/operating side of hardware. Since the
tie between physical and logical is paramount in the definition of Devices, a special association
characterizes it - CIM_Realizes. This is a Dependency association between Logical Devices
and Physical Elements. Its cardinality is many-to-many, indicating that hardware can realize
many Devices, and a device may be realized across several Physical Elements.

On the topic of hardware, sometimes a Device is used on one System, but its hardware is
located in another. Or, a Device may be shared across multiple Systems. These scenarios
raise questions regarding how a Device is identified and how it can be determined that the

CIM Core Model White Paper Version 2.4

September 6, 2000 30 of 54

Device is local, remote or shared. Regarding identification, it is likely that the basic Device is
modeled as a part of the System that hosts its hardware (whether general purpose or
dedicated). Then, there are the "other" Systems that may use the Device, and may include it as
one of their System Devices. In each of the Systems, the Device may be identified by a different
name. Ultimately, however, a network or protocol address will tie the distinct Elements together.
In addition, on the non-hardware hosting Systems, there is certainly no realization of the Device
in the Physical Packages of that System (or there may be no Realizes relationship at all). So,
how might the local Device and the real, remote Device on another System be associated? The
Device could have a Device Identity relationship with its counterpart in the hosting System, or
may be based/dependent on this other Device. Alternately, the local Device may require a
networking or connection Service to get to the real, remote Device. Instrumentation would have
to use one of these mechanisms to describe use of a Device on another System. Once the
lowest level, real, remote Device was located (with a distinct Realizes relationship to locate its
hardware), its associations could be examined to determine if any other Systems were using it in
a similar fashion. In this way, it could be determined whether the Device was shared. This is
illustrated in Figure 7, below.

Storage Array, An instance
of a Dedicated=“Storage”

CIM_UnitaryComputerSystem,
with available Storage Volumes

Each System has a CIM_DiskPartition
(that is one of its local
CIM_SystemDevices), made
available on a Volume published by
the Storage Array

SCSI Controller AND
Ethernet/Fibre Channel Network
Adapters describe communications,
Tied together with Device Identity

- On the logical side, each published
CIM_StorageVolume resolves via CIM_BasedOn

to a lower level CIM_StorageExtent.
- Ultimately, there is a CIM_RealizesExtent

association (a subclass of CIM_Realizes) to
CIM_PhysicalMedia (addressing the

physical side).

- Each Disk Partition is associated with 1+
Volumes from the Array via a CIM_BasedOn
(Dependency) relationship.
-The Volumes are also associated with a local
CIM_SCSIController via a CIM_SCSIInterface,
describing the SCSI aspects of the communication.
-There are no Realizes associations for any of the
Partitions.

Figure 7. Example of Remote Devices

CIM Core Model White Paper Version 2.4

September 6, 2000 31 of 54

As shown in Section 9, Figure 4, Logical Device has many properties and methods. A brief
overview of each is provided here:

• System Creation Class Name and System Name - The scoping System's keys

• Creation Class Name and Device ID - Device-specific identification

• Power Management Supported - A boolean indicating that power management is
supported for the Device

• Power Management Capabilities - An array of enumerated integer values, where the
permissible values are:

Unknown
Not Supported
Disabled
Enabled - Indicates that power management is known to be enabled, but the exact

feature set is not known
Power Saving Modes Entered Automatically (based on Device usage or other criteria)
Power State Settable (using the Set Power State method on Logical Device)
Power Cycling Supported (using the Set Power State method) - Power cycling is a

particular value of one of the input parameters of the Set Power State method
Timed Power On Supported (using the Set Power State method and "power cycling") -

Specifies that power should be reapplied at a particular point in the future. This is a
fairly advanced power management capability that is not routinely supported by a
Device.

• Availability - An enumeration characterizing the status of the Logical Device, expanding
on the Status information inherited from Managed System Element. Its values are fairly
explanatory and are specified as follows:

Other
Unknown
Running/Full Power
Warning
In Test
Not Applicable
Power Off
Off Line
Off Duty
Degraded
Not Installed (Device was known to have existed on the System, but has been "un-

installed" - OR - the System has been configured to support a specific Device but it
has not yet been installed)

Install Error (Device is installed but experienced an error during the installation
process)

Power Save - Unknown (Unknown indicates that the current power state of the Device
is unknown, but it is currently in a reduced power mode of operation)

Power Save - Low Power Mode (Low Power Mode indicates that the Device is still
functioning, but performance may be degraded)

Power Save - Standby (Standby indicates that the Device is NOT functioning but could
be brought to a full power state more quickly than starting from boot)

Power Cycle

CIM Core Model White Paper Version 2.4

September 6, 2000 32 of 54

Power Save - Warning (Warning indicates that the Device is in a reduced power mode
of operation, but some sort of error or warning has occurred. The Device should
be commanded back to a full power mode in order to diagnose the problem.)

Paused
Not Ready
Not Configured
Quiesced (The Device is functioning but not currently processing requests or

performing its normal function)
• Additional Availability - An array of enumerated values providing additional "Availability"

data. The permissible values for this property are equivalent to those specified for the
Availability property. The reason for this property is that Availability is defined as a
single-valued property. As the Availability property and its enumeration evolved, it
became apparent that more than one "Availability" status could be applicable to a
Device. So, the Additional Availability array was added to the Logical Device class.

• Status Info - An enumeration indicating whether the Device is in an enabled, disabled or
unknown state

• Last Error Code (a uint32), Error Description (a string) and Error Cleared (a boolean) -
Error information for the Device (Further detail and error counters are defined in the
DeviceErrorCounts class in the CIM Device Model.)

• Power On Hours and Total Power On Hours - Operational hours

• Other Identifying Info - A string array that can be used for additional data, beyond that
stored in the Device ID property, to name and identify a Logical Device. One example
where this is used occurs when both an operating system's device identification and a
device internal ID exist. One's value is chosen for the Device ID property and the
other's data can be stored in the Other Identifying Info array.

• Identifying Descriptions - A string array that has a ModelCorrespondence with Other
Identifying Info. There is a correspondence between the entries at the same index in
both arrays. The Description strings provide explanations and details behind the values
in the Other Identifying Info array.

• Max Quiesce Time - Maximum time in milliseconds, that a Device can run in a
"Quiesced" state. What occurs at the end of the time limit is device-specific. The Device
may unquiesce, may offline or take other action. A value of 0 indicates that a Device
can remain quiesced indefinitely.

• Reset method

• Set Power State - A method that takes two parameters, the power state to be set and
the date/time when the set should take effect

• Enable Device - A method indicating whether the Device should be enabled or disabled

• Online Device - A method indicating whether the Device should be onlined or offlined

• Quiesce Device - A method indicating whether the Device should be quiesced or
returned to operation. A request to Quiesce means that the Device should cleanly
cease all current activity. Once quiesced, a Device may be offlined for diagnostics, or
disabled for power off and hot swap.

• Save Properties - A method requesting that a Device capture its current configuration,
setup and/or state information in some backing store. The goal would be to use this

CIM Core Model White Paper Version 2.4

September 6, 2000 33 of 54

information at a later time (via the Restore Properties method) to return a Device to its
"present" condition.

• Restore Properties - A method requesting a Device to re-establish its configuration,
setup and/or state information from a backing store.

All the different Availability and Status states of a Logical Device can be confusing and should
be positioned relative to the others. The following paragraph attempts to do this …

If a Device is "Enabled" (indicated by a Status Info value of 3), it has been powered up, and is
configured and operational. The Device may or may not be functionally active, depending on
whether its Availability (or Additional Availability) indicates that it is "Running/Full Power",
"Offline" or "Quiesced". In an enabled but offline mode, a Device may be performing out-of-band
requests, such as running Diagnostics. It only makes sense to quiesce a Device that is
"Running/Full Power" and "Enabled". If a Device is "Disabled" (indicated by a Status Info value
of 4), a Device can only be "enabled" or powered off. In a personal computer environment,
"Disabled" means that the Device's driver is not available in the stack. In other environments, a
Device can be disabled by removing its configuration file. A disabled device is physically present
in a System and consuming resources, but cannot be communicated with until a load of a driver,
a load of a configuration file, or some other "enabling" activity has occurred.

14. Properties and Associations of
Services and Their Access Points

The CIM_Service class represents the configuration, operational data and management of
"function." The semantics are not about the function itself, but information needed to manage it.
For example, although you might have "email" or "word processing" services on your computer,
you would not use CIM to handle your individual mail messages, or open and edit documents
and files. You would use the native utilities and software of your computer system. These are
the operating and executing entities that implement Services. CIM is used to describe the
existence of email and word processing Services, to configure them, and to diagnose them if a
problem occurs.

Note: Where specific functionality and behavior are needed for management, these
are modeled as methods on the various classes in the CIM hierarchy.

Designed as a complementary class to Service, CIM_ServiceAccessPoint models the utilization
and invocation of a Service. It represents that a Service is made available for use by other
entities. Access Points are not the APIs, DLLs, OS commands, … to invoke Services (these are
actually the software implementations of Services), but the abstraction of access to a Service.

One could distinguish Service and Service Access Points (SAPs) in the context of a “provider-
consumer” relationship. Service represents the current configuration and operational data of the
provided function, and Service Access Points are the way to manage the consumption (or
access) of that function. In client-server terms, Service is the function at the server, while the
SAPs are the management of a client's use of the Service.

Service represents the management of any kind of function and is a very abstract concept. For
example, on a personal computer, a wide variety of Services may be running - word processing,
presentation preparation, email client, meeting scheduling (including a local/offline store) and
much more. In addition, when specific Services are not locally available, they can often be
accessed using the network. Access could be modeled as instances of Service Access Points.
Examples of the latter are SAPs to pull email from a server, to print at a network printer, or to

CIM Core Model White Paper Version 2.4

September 6, 2000 34 of 54

pull the latest meetings from the corporate meeting database. In all of these examples, there is
actually a layering or dependency of Access Points. The application oriented ones are
dependent on network access. Network access is modeled as instances and subclasses of
Protocol Endpoints, which are in turn subclasses of Service Access Points, in the CIM Network
Model. The following figure illustrates these concepts.

Email
Server

Network Printer and
Print Services

Local email client services
SAPs to access services of email server

Email SAPs dependent on Network SAPs
(ie, Protocol Endpoints)

Local presentation prep services
No local printer/print services
SAPs to utilize network printer
Print SAPs dependent on Network SAPs (ie, Protocol Endpoints)

Figure 8. Services and SAPs in Operation

The CIM Schema attempts to distinguish between the configuration and operational data of a
Service and SAP, and the implementations behind these features. For example, the
configurations of a Printer Device and its supporting software/device driver are different than the
configuration of a Network Print Service and its access from client computers.

Services and Service Access Points are not the Devices and/or software that implement them.
The latter are modeled as subclasses and instances of Logical Devices and Software
Features/Software Elements, and are associated with Services and SAPs using the following
relationships:

• Device Service Implementation and Device SAP Implementation (defined in the CIM
Device Model)

CIM Core Model White Paper Version 2.4

September 6, 2000 35 of 54

• Software Feature Service Implementation and Software Feature SAP Implementation
(defined in the CIM Application Model)

• Software Element Service Implementation and Software Element SAP Implementation
(defined in the CIM Application Model)

The last two sets of associations are very similar and would be redundant if both were
implemented. The Application Model, in fact, states that one approach must be chosen over the
other. Either the implementation of a Service or SAP is based on the definition of Software
Features (the functions and capabilities of products) or Software Elements (individually
deployable and manageable software components - for example, files). The redundancy comes
from the fact that Software Features decompose into Software Elements.

Association to Software Elements (versus Software Features) would be chosen when greater
granularity is needed. When a Software Feature is fully deployed, it can result in many
executable Elements. These Software Elements may each implement different Services. The
individual Service implementations could be conveyed using the Software Element-XXX-
Implementation associations. These relationships are especially important when Software
Feature and Product aspects are not instrumented for a piece of software (i.e., when the
acquisition and deployment of the software is not detailed). In this case, the Software Element -
XXX-Implementation associations are the only ones available.

One additional clarification is needed regarding Service implementation … It was noted in
Section 13 on Logical Devices, that Devices have a distinct function. This function is fairly
inseparable from the identity of the Device (as a Printer, as a Keyboard, as a Fan, etc.)
Because they are inseparable, there is no need to have another Service class (for example,
"FanService") describing Device function. The question then arises as to the purpose and
semantics of the Device Service Implementation association. This relationship describes the
dependencies of a Service on operating hardware. It states that this Device is involved in the
implementation of this Service. For example, to have Print Services (to actually print a
document), it is absolutely necessary to have a CIM_Printer. And, as mentioned above, there is
a distinction between Print Services and a Printer Device - "the configurations of a Printer
Device and its supporting software/device driver are different than the configuration of a Network
Print Service and its access from client computers." Device Service Implementation models the
dependency of the Print Service on the Printer, not vice versa.

Given this introduction, Figure 9 shows the Service-related aspects of the Core Model.

CIM Core Model White Paper Version 2.4

September 6, 2000 36 of 54

LogicalElement

System

CreationClassName: string [key]
Name: string [key]
NameFormat: string
PrimaryOwnerName: string
PrimaryOwnerContact: string
Roles: string[]

1

*CreationClassName: string [key]
Name: string [key]
StartMode: string
Started: boolean

StartService(): uint32
StopService(): uint32

Service ServiceAccessPoint

CreationClassName: string [key]
Name: string [key]

ServiceAccess
BySAP

*

1

HostedAccessPoint

HostedService
*w

*w

SAPSAP
Dependency

Service
Service

Dependency

*

* *

*
*

*

ServiceSAPDependency

Service
Component*

*

ManagedSystemElement

Name: string
Status: string
InstallDate: datetime

ManagedSystemElement

Name: string
Status: string
InstallDate: datetime

ProvidesService
ToElement

*

*

Figure 9. The CIM Service/SAP Classes

Overviewing the properties of a Service object …

• System Creation Class Name and System Name are the hosting (scoping) System's
keys. These provide the context or locale in which the Service is provided.

• Creation Class Name and Name are the Service class' individual Key properties.

• Start Mode is an enumerated string value indicating whether the Service is automatically
started by a System, Operating System, etc. or only started upon request.

• Started is a boolean indicating whether the Service is currently running/has been started
(TRUE), or stopped (FALSE).

• Start Service and Stop Service are fairly straightforward methods.

The properties of Service Access Points are only the hosting System’s keys (System Creation
Class Name and System Name) and the Creation Class Name and Name of the SAP.

One observation is that a large number of associations exist. This “problem” (or “opportunity”)
can be seen throughout the CIM Schema, but most predominantly here. It is important to

CIM Core Model White Paper Version 2.4

September 6, 2000 37 of 54

remember that each of the associations reflects a different semantic. The defined associations
can be grouped as follows:

• Provider-Consumer relationships (1) – Service Access By SAP. This association ties an
Access Point (the means of consuming or accessing a Service) with its related
Service(s).

• Hosting relationships (2) – Hosted Service and Hosted Access Point. Services and
SAPs exist within the context of a System, typically where their Device and software
implementations are also installed and hosted. These objects are associated at the
abstract level of System, rather than to a Computer System, allowing Services to exist in
distributed components such as Application or Network Systems.

• Dependencies (4) – Provides Service To Element, Service Service Dependency,
Service SAP Dependency and SAP SAP Dependency. The first association, Provides
Service To Element, describes the general dependency of a Managed System Element
on the functionality provided by a Service. The second association, Service Service
Dependency, is actually a subclass of Provides Service To Element. It indicates that a
Service depends on other Services having executed, being co-resident or being absent,
in order to provide their own functionality. (The nature of the dependency is described
using a property of the association, Type Of Dependency, which is an enumerated
unsigned integer. Type Of Dependency indicates whether the “other” Service must be
completed, started or not started.) Moving to the third association, Service SAP
Dependency models the scenario where a Service uses the access points of another
Service. For example, Boot Services may be dependent on underlying BIOS disk and
initialization Services. In the case of the initialization Services, the Boot Service is
dependent on the init Services having completed (Service Service Dependency). But,
for the BIOS disk Services, Boot Services may actually utilize the SAPs of the disk
Services – modeled as an instance of the Service SAP Dependency. In addition, a SAP
may be dependent on another, underlying Service (for example, for connectivity), and
utilizes the Access Points of that Service. This relationship is modeled using the SAP
SAP Dependency association.

• Component relationships (1) - Service Component. This association describes that
subordinate services are aggregated to form a higher level Service.

• Implementation (6, as discussed above) – Software Feature Service Implementation,
Software Feature SAP Implementation, Software Element Service Implementation,
Software Element SAP Implementation, Device Service Implementation and Device
SAP Implementation. These associations reflect the implementations behind the
functionality or access to the functionality.

Note that the Core Model does not represent or allow a single Service to be hosted on multiple
Systems (for example, a Print Service hosted by a net worked Computer System and a
"dedicated" Network Printer). If individual Services are grouped together to create a larger entity,
this should be modeled as an Application System. (The Application System class is explained in
more detail in the CIM Application Model.) An Application System can act as aggregation point
for Services, where each Service is located on a single hosting System.

CIM Core Model White Paper Version 2.4

September 6, 2000 38 of 54

15. Products and FRUs
Product is a concrete class that represents a collection of Software Features and Physical
Elements (and possibly other Products), that is acquired and/or deployed as a unit. Acquisition
implies an agreement between a supplier and the consumer, which may have implications to
licensing, support and warranty. The Product class is intended to cover any form of acquisition,
including deployment of internally generated applications, even though no actual purchase is
involved.

FRU is an acronym for "field replaceable unit". It is a vendor-defined collection of Products,
Physical Elements and/or Software Features. FRUs "replace" and are associated with a Product
(via the Product FRU relationship). Their purpose is to maintain or upgrade the related Product.

Figure 10 represents the Product/FRU classes in the Core Model:

CIM Core Model White Paper Version 2.4

September 6, 2000 39 of 54

1

Product

Name: string [key]
IdentifyingNumber: string [key]
Vendor: string [key]
Version: string [key]
SKUNumber: string
WarrantyStartDate: datetime
WarrantyDuration: uint32

FRU

FRUNumber string [key]
IdentifyingNumber string [key]
Vendor string [key]
Name string
RevisionLevel string

Product
ParentChild*

*

0..1

SupportAccess

SupportAccessId: string [key]
CommunicationInfo: string
CommunicationMode: uint16
Locale: string Product

Support*
*

ProductFRU

0..1

*

FRUIncludesProduct

0..1 * Compatible
Product

*

*

ProductProduct
Dependency

* *

Dependency *

* Description: string
Caption: string

ManagedElement

ManagedSystemElement

Name: string
Status: string
InstallDate: datetime

<From Core Model>

PhysicalElement LogicalElement

<From Application Model>

SoftwareFeature

Product
PhysicalElements

Product
SoftwareFeatures

*

*w

FRU
PhysicalElements

*

0..1

FRU
IncludesSoftwareFeature

0..1

*

Figure 10. The Product/FRU Object Hierarchy

CIM Core Model White Paper Version 2.4

September 6, 2000 40 of 54

In reviewing what is acquired as a Product, hardware is purchased (ie, Physical Elements), as
well as software and sometimes other Products (bundled with the originally purchased Product).
Therefore, the “components” of a Product are defined using the associations, Product Physical
Elements, Product Software Features and Product Parent Child. The latter models the fact that
one Product can incorporate or bundle other “sub”-Products.

The bond of Product to software is so strong that Software Features are actually weak to
(scoped by) Products, as defined by the Product Software Features association. For more
information on this association, refer to the CIM Application Model.

Several additional Product-related associations remain to be discussed. They are: Compatible
Products and Product Product Dependency. The latter is very similar to the Service Service
Dependency relationship discussed in the previous section. It indicates that a Product depends
on other Products being installed or being absent. The nature of the dependency is described
using a property of the association, Type Of Dependency, which is an enumerated unsigned
integer. Type Of Dependency indicates whether the “other” Product must or must not be
installed.

The Compatible Product association is designed to convey a wide variety of information.
Quoting from the Core MOF, "For example, it can indicate that the two referenced Products
interoperate, that they can be installed together, that one can be the physical container for the
other, etc. The string property, Compatibility Description, defines how the Products interoperate
or are compatible, any limitations regarding interoperability or installation, …"

Similar to Product, a FRU is composed of hardware (Physical Elements), software (Software
Features) or other Products. The association of Physical Elements to a FRU is specified using
the FRU Physical Elements relationship. The association of component Products to a FRU is
specified via the FRU Includes Product relationship. And, the association of Software Features
to FRUs is conveyed using the FRU Includes Software Feature association.

At first glance, there appears to be a bit of overlap and redundancy with respect to FRUs
including Products and also including Software Features, since Features are weak to Products.
Couldn't the same info be conveyed by only having FRUs aggregate Products - and then the
Products carry along their Software Features? The answer would be yes if all there were no
levels of granularity with respect to Software Features being included in a FRU - i.e., if all
Features in a Product were always in a FRU. However, this does not often happen. When
something is FRUed, it is likely to ship with only a subset of a Product's Features (the ones that
are applicable to the thing being replaced). This is the reason that the FRU Includes Software
Feature association exists. Software Features are still weak to Products, but not all the Features
of a Product may be in a FRU. Said another way, it is not required that an entire Product be
associated with a FRU just to indicate that new software is also shipped.

Briefly reviewing a Product’s properties, they are:

• Vendor, Name, Identifying Number and Version – Which combine to define a Product’s
key structure. Identifying Number may be a serial number or perhaps a die number on a
chip.

• Caption and Description (Inherited from Managed Element)

• SKU Number (where SKU refers to a “stock keeping unit” number)

• Warranty Start Date and Warranty Duration (in days)

CIM Core Model White Paper Version 2.4

September 6, 2000 41 of 54

The FRU object’s properties are:

• Vendor, FRU Number (ordering information) and Identifying Number – Which combine
to define a FRU’s key structure

• Name

• Caption and Description (Inherited from Managed Element, where Description is
overridden to include information from MappingStrings)

• Revision Level

One of the predominant reasons for creating the Product class was to reflect how support is
obtained. For this reason, the Support Access class was defined. Its properties are:

• Support Access ID – The key for the class.

• Caption and Description (Inherited from Managed Element, where Description is
overridden to include information from MappingStrings)

• Locale – A string describing the geographic region or language dialect to which this
Support applies

• Communication Mode – An enumeration defining whether the support is via BBS, URL,
fax, phone, e-mail, etc.

• Communication Info – A string providing more detail related to the Communication
Mode. For example, if support is provided via fax, then the fax number should be listed
in the Communication Info property.

Instances of the Support Access class are associated with Products using the Product Support
relationship.

Products are purchased for installation and subsequent use. Installing the Physical Elements
and supporting software of a “hardware” Product typically results in the creation or upgrade of a
System object (for example, a Computer System), or a Logical Device (for example, a Modem).
Products do not “contain” these Logical Elements, but the Elements are result of the installation
of the Products’ components.

CIM Core Model White Paper Version 2.4

September 6, 2000 42 of 54

16. Settings and Configurations
This section summarizes the concepts behind the CIM_Setting and Configuration classes, and
suggests guidelines for their use. Figure 11 shows the related classes of the CIM Core Model,
as well as the Collection classes since they are referenced in associations.

ManagedSystemElement

Name: string
Status: string
InstallDate: datetime

Dependency

Antecedent: ref ManagedElement [key]
Dependent: ref ManagedElement [key]

Configuration

Name: string [key]

Setting

SettingID: string

VerifyOKToApplyToMSE(
 [IN] CIM_ManagedSystemElement: ref MSE,
 [IN] TimeToApply: datetime,
 [IN] MustBeCompletedBy: datetime): uint32
ApplyToMSE(
 [IN] CIM_ManagedSystemElement: ref MSE,
 [IN] TimeToApply: datetime,
 [IN] MustBeCompletedBy: datetime): uint32
VerifyOKToApplyToCollection (
 [IN] CIM_CollectionOfMSEs ref Collection,
 [IN] datetime TimeToApply,
 [IN] datetime MustBeCompletedBy,
 [OUT] string CanNotApply[]): uint32
ApplyToCollection(
 [IN] CIM_CollectionOfMSEs ref Collection,
 [IN] datetime TimeToApply,
 [IN] boolean ContinueOnError,
 [IN] datetime MustBeCompletedBy,
 [OUT] string CanNotApply[]): uint32

Element
Configuration

*
*

ElementSetting
*

Setting
Context

*

*

DependencyContext

*

**

DefaultSetting

0..1

Configuration
Component

*

*

CollectionOfMSEs

CollectionID: string

*

Collected
Collections

*
**

*

Collection
Configuration

*

*

Collection
Setting

*

Dependency

*

*
*

Collection

Collected
MSEs

Member
OfCollection

*

Description: string
Caption: string

ManagedElement

*

Figure 11. Setting, Configuration and Collection Cl asses

CIM Core Model White Paper Version 2.4

September 6, 2000 43 of 54

As background, this discussion assumes that a System (or one of its components) is modeled
using some or all of the following information:

• Current operational state, including "configuration in use"

• Potential configuration

• Potential configuration to be applied "next"

• Configuration last applied

Settings and Configurations are useful to capture some of the information above. Settings
define specific, pre-configured parameter data to be "applied" (loosely transactionally) to one or
more Managed System Elements. They are very much tied to the properties of existing objects
through the Element Setting association. Configurations aggregate Settings and Dependencies,
representing a certain behavior or desired functional state for Managed System Elements.

Specifically addressing the 4 sets of information above:

• Potential configuration reflects a predefined set of parameters that are applied or set
together. This is either an instance of CIM_Setting (which groups
properties/parameters), or an aggregation of CIM_Settings (which is an instance of
CIM_Configuration). Settings are aggregated into a Configuration via the Setting
Context association. Settings and Configurations are tied to the Managed System
Elements to which they apply, using the Element Setting and Element Configuration
relationships, respectively. Also, they may be tied to collections of Elements via the
Collection Configuration and Collection Setting relationships.

Note: Two methods are defined on the Setting class related to applying a
Setting to a Managed System Element, or a Collection of MSEs. Also, two
methods are available to first "Verify" that it is possible and/or acceptable to
apply the Setting.

• The configuration to be applied "next" is not currently addressed by CIM (Other than to
invoke one of the Apply methods and specify a date/time "ToApply" as one of the
method parameters)

• "Configuration last applied" could be handled via a new property, LastApplied, on the
Element Setting association or a new association between a Setting and Managed
System Element (CIM_CurrentSetting?)

• Current state is defined by an instance of a class and/or its associations. In today's CIM
Schema, properties are duplicated in a CIM_Setting to describe what could be or what
was set for a Managed System Element. Operational data does not go into the Setting
object's properties - since the "specific, pre-configured parameter data" currently stored
there would be overwritten and lost. Operational changes (due to policy, operator
intervention or real world constraints) affect operational data - Settings are not in this
realm. An example is defining a Setting.ModemSpeed property = 56K (a constant
value), but putting current speed in the CIM_Modem.Speed property (which might
currently be reading 48.2K).

It may be possible to avoid some property replication by relating an instance of a class to its
"current" Setting with a new association (as above, CIM_CurrentSetting?). However, to do this
and not replicate properties would imply that the instance's operational values never differ from
the values specified in the Setting. Otherwise, if values in operation can differ from the Setting
values (ie, the Modem example), you need to replicate the properties.

CIM Core Model White Paper Version 2.4

September 6, 2000 44 of 54

The best uses of Settings and Configurations are:

1. To define groups of parameters/properties and the values of these properties - where the
values are predetermined, are interrelated, and/or should be set together

2. To define groups of parameters/properties which may simultaneously apply to multiple
objects

3. To define groups of parameters/properties which will be re-applied to one or more Managed
System Elements - at a specific time, given specific environmental or operational conditions, or
on operator/policy request

4. To aid in the creation/deletion of objects and/or definition of new function. This is best
accomplished via methods on subclasses of Managed System Elements (especially
CIM_Service), which may have some of their data fed through Settings and Configurations.

Settings and Configurations are not appropriate to:

1. Write a property value to an instance (just use the HTTP ModifyInstance operation)

2. Hold current operational data that is changeable

3. Do "what if" scenarios across objects (create and populate a new namespace instead)

A few associations in Figure 11 have not yet been addressed in the explanation of Settings and
Configurations - Default Setting, Configuration Component and Dependency Context. The first
two associations are very straightforward. The first allows the specification of the "default"
Setting for a Managed System Element. The second describes a layering of Configurations -
building higher-level configurations from lower level ones. Configuration Component enables
the assembly of complex configurations by grouping together simpler ones. The last
association, Dependency Context, is a little more complex. It indicates that a Configuration
aggregates Settings AND Dependencies for Managed System Elements. It implies that that the
referenced Dependency should be in place in order for the application of the Configuration and
its aggregated Settings to succeed.

For example, to connect to a Mail System from “home”, a Dependency on a Modem and security
software exists. However, a Dependency on an Ethernet Adapter exists at “work”. Setup and
configuration data for the pertinent Logical Devices (in this example, a CIM_Modem and
CIM_EthernetAdapter) are defined in individual Setting objects. Two Configuration objects can
be instantiated (“John at Home” and “John at Work”) – representing the different Device and
software setups, operational characteristics and dependencies of these two usage scenarios.

As a usage example of Setting, consider the following MOF segment from the CIM Device
Model:

// ==
// MonitorResolution
// ==
 [Description (
 "MonitorResolution describes the relationship between "
 "horizontal and vertical resolutions, refresh rate and scan "
 "mode for a DesktopMonitor. The actual resolutions, etc. that "
 "are in use, are the values specified in the VideoController "
 "object.")
]
class CIM_MonitorResolution : CIM_Setting

CIM Core Model White Paper Version 2.4

September 6, 2000 45 of 54

{
 [Override ("SettingID"),
 Key, MaxLen (256),
 Description (
 "The inherited SettingID serves as part of the key for a "
 "MonitorResolution instance.")
]
 string SettingID;
 [Description ("Monitor's horizontal resolution in Pixels."),
 Units ("Pixels"),
 ModelCorrespondence {
 "CIM_VideoController.CurrentHorizontalResolution"},
 MappingStrings {"MIF.DMTF|Monitor Resolutions|002.2"}
]
 uint32 HorizontalResolution;
 [Description ("Monitor's vertical resolution in Pixels."),
 Units ("Pixels"),
 ModelCorrespondence {
 "CIM_VideoController.CurrentVerticalResolution"},
 MappingStrings {"MIF.DMTF|Monitor Resolutions|002.3"}
]
 uint32 VerticalResolution;
 [Description (
 "Monitor's refresh rate in Hertz. If a range of rates is "
 "supported, use the MinRefreshRate and MaxRefreshRate "
 "properties, and set RefreshRate (this property) to 0."),
 Units ("Hertz"),
 ModelCorrespondence {
 "CIM_VideoController.CurrentRefreshRate"},
 MappingStrings {"MIF.DMTF|Monitor Resolutions|002.4"}
]
 uint32 RefreshRate;
 [Description (
 "Monitor's minimum refresh rate in Hertz, when a range of "
 "rates is supported at the specified resolutions."),
 Units ("Hertz"),
 ModelCorrespondence {
 "CIM_VideoController.MinRefreshRate"},
 MappingStrings {"MIF.DMTF|Monitor Resolutions|002.6"}
]
 uint32 MinRefreshRate;
 [Description (
 "Monitor's maximum refresh rate in Hertz, when a range of "
 "rates is supported at the specified resolutions."),
 Units ("Hertz"),
 ModelCorrespondence {
 "CIM_VideoController.MaxRefreshRate"},
 MappingStrings {"MIF.DMTF|Monitor Resolutions|002.7"}
]
 uint32 MaxRefreshRate;
 [Description (
 "Integer indicating whether the monitor operates in "

CIM Core Model White Paper Version 2.4

September 6, 2000 46 of 54

 "interlaced or non-interlaced mode. Values are: "
 "1=\"Other\", 2=\"Unknown\", 3=\"Not Supported\", "
 "4=\"Non-Interlaced Operation\" and 5=\"Interlaced "
 "Operation\"."),
 ValueMap {"1", "2", "3", "4", "5"},
 Values {"Other", "Unknown", "Not Supported",
 "Non-Interlaced Operation", "Interlaced Operation"},
 ModelCorrespondence {
 "CIM_VideoController.CurrentScanMode"},
 MappingStrings {"MIF.DMTF|Monitor Resolutions|002.5"}
]
 uint16 ScanMode;
};

This MOF segment describes a subclass of Setting (Monitor Resolution) that specifies valid
configuration options for a Desktop Monitor. The referenced Monitor is associated with the
Monitor Resolution object by a subclass of the Element Setting relationship. The various,
possible Monitor configurations would be defined as individual instantiations of the Monitor
Resolution object. If one wished to “apply” one of these Settings to the CIM Schema, the Model
Correspondence qualifier indicates which CIM properties are affected by the Monitor Resolution
information (i.e., the Video Controller's properties that output to the Monitor).

One last aspect of the Setting/Configuration Model must be explained. This is the fact that
Configuration objects have keys (and are “concrete” classes) versus Setting objects (which do
not have keys and are “abstract” classes). A concrete class is one that can be instantiated. An
abstract class is very conceptual, and must be subclassed in order to be reasonably instantiated
- i.e., to add properties, define further associations, etc.

As currently defined, the Setting object is very conceptual. It only has three properties:

• SettingID

• Description and Caption (Inherited from Managed Element)

There is no parameter information defined at this level of the Core Model, for the Setting object.
It would not make sense to define such data here – since it would vary greatly by subclass.
Hence, the Setting object is “abstract” and must be subclassed in order to define a key, define
any scoping information (i.e., weakness and Propagated keys), define its parametric data and
instantiate it. This is what was done in the Monitor Resolution subclass, used as an example
above.

The Monitor Resolution class could reasonably be instantiated. The SettingID property is
overridden to make it a key property for the class. And, since the “abstract” qualifier is not
defined, Monitor Resolution is a concrete class.

Let's examine the reasoning why Monitor Resolution is not Weak to any other CIM class. The
thinking was that the class' instance values were not unique to (scoped by) a single instance of a
Desktop Monitor. For example, it is possible to create single instances of the Monitor Resolution
class describing the valid combinations of parameters for an Acme XYZ Monitor. These Settings
of valid parameter values may then be associated with all instances of CIM_DesktopMonitor that
are Acme XYZ monitors. The Setting would not be weak to a single instance. On the other
hand, it may be reasonable to define subclasses of CIM_Setting that are weak to Systems,
Devices, Services, etc. These subclasses would indicate that a particular instance of the class
holds the Settings/parameters for a particular System/Device/Service/etc., and no other.

CIM Core Model White Paper Version 2.4

September 6, 2000 47 of 54

Configuration objects do not require additional properties in order to be instantiated. They
represent aggregations only – although additional properties and associations can be defined in
subclasses. Hence, the Configuration object has a key (its Name property) and is a concrete
class (can be instantiated).

In looking back on this decision, however, it seems that Configurations may indeed exhibit
"weak"ness - similar to Settings. Future versions of the CIM Schema may specify peer
Configuration classes that have scoped (Weak) associations to various Managed System
Elements.

16.1 Q and A on Settings and Configurations
1. [Q] Should all configurable attributes within the model have corresponding Setting classes?

[A] No, some properties may just be WRITEable. However, preconfigured/predefined data and
properties that should be set together are reasonable candidates for Settings. Also, data that
would be configured via policy and then "applied" are also candidates.

2. [Q] The Managed System Element to which to apply a Setting is an argument to the
ApplyToMSE method of Setting. How is this related to the Setting's relationship to MSEs via the
CIM_ElementSetting association? Is there an instance of CIM_ElementSetting relating a given
CIM_Setting instance with each CIM_MSE to which it has been applied?

[A] You may require that you have an ElementSetting relationship in place before applying a
Setting to a specified Managed System Element. However, this association is not mandatory. If
a Setting is applicable to ALL video controllers, then this could be defined without creating the
relatively useless ElementSetting relationship to ALL video controllers.

3. [Q] In usual OO modeling, the interface to change an object is usually part of the interface
definition of the object itself. The setting model changes this and moves the interface into a
separate object associated with the target object only though an association (and a loose
association at that when viewed as part of a configuration). How is this problem addressed?

[A] Is this a "set" method for a parameter? If so, it is covered by CIM's ModifyInstance HTTP
method and making a specific property WRITEable. Settings define specific, pre-configured
parameter data to be "applied" together.

ElementSetting is not a "loose association" regardless of whether a Setting is part of a
Configuration or not. The association is still specific, tying a Setting to a Managed System
Element. In fact, a subclass of Setting may even be weak to a specific component or system -
likely defined by a subclass of ElementSetting that uses the Weak qualifier.

4. [Q] It will be typical in making changes to systems that the actual changes to detailed
properties of the objects effected will not be explicitly stated but rather the general desired target
state of the system will be stated and the details are left to the object implementations (such as
"Add Vlan xyz to this domain"). Many switches, ports on switches, etc. will be changed. It is
inappropriate to require that the change request indicate what all of these changes are. How do
settings and configurations address this issue?

[A] They don't. Settings and Configurations alone should not be used to "add VLAN xyz". In
this example, you are creating many new instances and associations. Settings and

CIM Core Model White Paper Version 2.4

September 6, 2000 48 of 54

Configurations are closely tied to current instances of Managed System Elements, but could be
used to describe the "general desired target state" and/or specific configuration parameters that
influence the implementation.

5. [Q] Neither Setting or Configuration is bound to a System. In fact, since Configuration has a
key, it cannot be bound to a System. Therefore, you have no way to ensure that the
Configuration goes to the right entity.

[A] The reason that Settings and Configurations are not bound to Systems is that they may only
apply to specific components of Systems (for example, only applying to a Video Controller). We
did not want to tie the definition to the very high level System, when we could tie a specific
subclass to a specific component.

Checking that you "apply" to the right entity, is checking that you have a valid ElementSetting.
However, as mentioned above (#3), this association is not mandatory.

6. [Q] Why is there a DefaultSetting but no DefaultConfiguration?

[A] This is certainly reasonable to define and could be added with no change in semantics.

7. [Q] Do Configurations group like Settings? In other words, if I had 3 Settings for my monitor,
would these be grouped into a single Configuration?

[A] Configurations have the semantics of an aggregator of Settings and Dependencies, to
describe a state or behavior - nothing more. From the example in Section 16, a mail setup at
"home" versus at the "office" could involve different applications (maybe an email client versus a
web browser), different setup of the applications, choice of a modem versus a network adapter,
etc. The appropriate Settings would be grouped together within an instance of Configuration.
Certainly these are not "like Settings" but quite diverse.

BTW, there really is no need for a Configuration object with respect to setting up a Video
Controller. But, let's assume that a scenario existed where one was needed. I could reasonably
group three different Setting instances into a single Configuration, or I might need three different
Configurations, each with a specific Setting instance, for three different applications. If grouped
into one Configuration, this would indicate that any one of the three Settings could be applied
within the Configuration.

Configurations don't group "like" Settings - they group the appropriate Settings for a specific
behavior or state.

CIM Core Model White Paper Version 2.4

September 6, 2000 49 of 54

17. Collections
CIM_Collection is an abstract base class for representing groups of Managed Elements. It is
graphically shown in Figure 11, in Section 16. Collection defines no properties of its own, but
does define a generic aggregation, Member Of Collection, that can be used to collect any type of
Managed Element.

Subclassing and specializing Collection, CIM_CollectionOfMSEs is another abstract class
grouping only Managed System Elements. It is defined as abstract to force subclassing to
capture the specific behavior and semantics of how the Collection will be used.

There are two main motivators for this class. The first is to easily identify a group of Managed
System Elements. The second is to simplify the process of associating Configuration and Setting
objects with the Managed System Elements to which they apply. Without Collections, a
developer would be forced to define or enumerate individual Element Setting and Element
Configuration associations to the (potentially many) Elements in a Collection. This would lead to
instance explosion. Furthermore, it would not easily capture the semantics that these particular
Settings and Configurations are indeed the same objects for each of the Collection's members.

The Collection Of MSEs object defines a single property, Collection ID, which is a string of up to
256 characters. When subclassed, this property may be overridden to define it as part of the key
structure of the new class. When aggregating Elements into the Collection Of MSEs class, the
Collected MSEs relationship is used. It is a subclass of the Member Of Collection aggregation.

Lastly, the Collected Collections aggregation is a top-level association that allows the nesting of
CIM_CollectionOfMSEs objects. Before the definition of Managed Element and the generic
Collection class, this association conveyed a very different semantic than Collected MSEs and
had no corollary in the Schema. Today, however, the latter is not true. Collected Collections
could subclass from Member Of Collection, on the basis of semantics. However, on the basis of
reference names, this is not possible. Member Of Collection uses the reference names Member
and Collection, but Collected Collections uses the names Collection and CollectionInCollection.
For this reason, it is recommended that new development use the Member Of Collection
aggregation - even to aggregate Collections into other Collections - and maintain the Collected
Collections association as legacy.

CIM Core Model White Paper Version 2.4

September 6, 2000 50 of 54

18. Statistics
CIM_StatisticalInformation is an abstract base class for the statistics class hierarchy in CIM. This
hierarchy is shown in Figure 12, below. It represents a set of statistical data and/or metrics that
is provided by and applicable to one or more Managed Elements.

The Statistical Information class inherits the Caption and Description properties from Managed
Element, and defines a new property, called Name. This property is defined as a string, of a
maximum of 256 characters, that provides a label by which the set of statistics and metrics are
known. It can be overridden in a subclass to be a Key property.

StatisticalInformation

Name: string

Statistics

*
Related

Statistics

*
*

CreationClassName:
string [key]
Name: string [key]

DeviceStatistical
Information

CreationClassName:
string [key]
Name: string [key]

SystemStatistical
Information

CreationClassName:
string [key]
Name: string [key]

ServiceStatistical
Information

CreationClassName:
string [key]
Name: string [key]

SAPStatistical
Information

CreationClassName:
string [key]
Name: string [key]

PhysicalStatistical
Information

Weak associations exist for each subclass of StatisticalInformation

*

Description: string
Caption: string

ManagedElement

DeviceStatistics association
to LogicalDevice

SystemStatistics
association to System

ServiceStatistics association
to Service

SAPStatistics association
to Service Access Point

PhysicalStatistics association
to PhysicalElement

Figure 12. The CIM Statistical Information Hierarchy

CIM Core Model White Paper Version 2.4

September 6, 2000 51 of 54

Two associations are defined for Statistical Information (which are inherited by all subclasses).
These two associations are generic to the different types of statistics that are modeled in CIM.

• CIM_Statistics is a structural association relating a Managed Element to its statistical
data. This enables a common representation and tying of statistical data to any type of
Managed Element.

• CIM_RelatedStatistics is a top-level association for defining hierarchies and/or
dependencies of instances of Statistical Information subclasses.

There are five subclasses of Statistical Information in the Core Model today. These are matched
to the five fundamentally different subclasses of Managed System Element: Logical Devices,
Systems, Services, Service Access Points, and Physical Elements.

The five subclasses are very symmetrical. Each defines a Weak association between itself and
the subclass of Managed System Element for which statistical information is gathered. And,
each has a composite key that is made up of its own Creation Class Name property, and two
other components. The first component is the common overriding of the Name property,
inherited from Statistical Information. The second component adds the appropriate keys based
on the Weak association to a particular subclass of Managed System Element.

The five subclasses and their Weak associations are:

• Device Statistical Information and Device Statistics

• System Statistical Information and System Statistics

• Service Statistical Information and Service Statistics

• SAP Statistical Information and SAP Statistics

• Physical Statistical Information and Physical Statistics

In CIM, there are two approaches to modeling statistical data. Statistics can be defined either as
properties of a class or in a subclass of Statistical Information. In some CIM classes, statistics
are embedded as properties of the class. The Device Model includes several examples of this,
such as in the Ethernet and Fibre Channel Adapter classes. Their statistical data are not
modeled in a subclass of Statistical Information, because it is viewed as vital to understanding
the operation of the hardware. Therefore, it is defined in the class itself. However, some
statistics can be found in subclasses of Statistical Information. For example, the Device Model
also defines CIM_FCAdapterEventCounters and CIM_FibrePortEventCounters classes as
subclasses of CIM_DeviceStatisticalInformation. In these cases, the data would not typically be
retrieved as part of the Device's status and operation. So, the data is placed in a subclass of
Statistical Information, and associated with the instance for which the statistics are defined.

CIM Core Model White Paper Version 2.4

September 6, 2000 52 of 54

19. Mappings from Other Standards
As the Core Model is almost entirely composed of abstract classes, there are very few direct
mappings to DMI and none to SNMP. Mappings of Schema classes become much more
prevalent in the specializations of the Core classes, found in the Common Models. For example
in the area of applications, there are specific mappings of software Product information to the
application-related SNMP MIBs and the DMI MIFs. In the Network Model, there are many
mappings to the network MIBs designed in the IETF.

The DMI attributes that are mapped in the Core Model are from the following Groups:

• ComponentID attributes mapped into Managed System Element and Product properties

• General Information attributes mapped into System properties

• Operational State attributes mapped into Logical Device properties

• FRU attributes mapped into FRU and Support Access properties

• Support attributes mapped into Support Access properties

20. Do's and Don'ts in CIM Design
Sometimes it is as informative to review what was NOT done in a Model, as to understand what
is modeled. This section attempts to describe some modeling decisions and approaches taken
by the CIM designers - both from the "DO" as well as the "DON'T" sides.

• Do not collapse Logical and Physical Devices.

When using the CIM Schema and/or defining extensions, care should be taken to understand
the Logical/Physical dichotomy and correctly analyze classes and properties. Be aware that
there are usually different discovery and instrumentation mechanisms for these two classes of
objects.

• Do not model System and Device product types as individual classes.

Product types (for example, an Acme 10/100 Ethernet adapter or an Acme Personal Computer
Model XYZ) are not represented in the CIM Schemas. Instead, “generic” System and Device
classes are defined and instantiated for individually acquired and instrumented elements.
Although this leads to a lot of duplicated data (i.e., MaxSpeed is always 100M for the Acme), it is
flexible and extensible. Product “types” can change incrementally, which makes standard type
info (which is typically static), dynamic. Also, taking this modeling approach would change the
focus of CIM - from modeling information that crosses product boundaries to a set of "templates"
representing specific products.

• Take care to distinguish between abstract and concrete associations on the basis of
whether the association itself can be instantiated.

The concepts of abstract (conceptual) versus concrete (able to be instantiated) classes are
important in CIM. Take care when linking concrete objects, as a concrete association must be
defined. Alternately, it is allowed to define a concrete association, linking abstract objects. The
latter can occur where the association is reasonably instantiated “as is” and where the
association makes sense for the concrete subclasses of the original, abstract classes.

CIM Core Model White Paper Version 2.4

September 6, 2000 53 of 54

• It is not necessary to create a normalized model. Redundant/duplicated data may
be needed.

A totally normalized model is not a requirement. Duplicated or derived data is sometimes
desirable when the data is difficult to calculate, conceptually valuable in multiple locations in the
model, or for other similar reasons. An example of redundant data can be found across the
Device and Network Models, where both the CIM_NetworkAdapter and CIM_ProtocolEndpoint
classes include a Network Address property.

• Do not force the model to be completely typed.

There are many examples where the CIM Schema specifies subclasses distinguished by the
type of the object – for example, CIM_Sensor’s Numeric Sensor, Binary Sensor, Discrete Sensor
and Multi-State Sensor subclasses (in the Device Model) or all the subclasses of
CIM_MediaAccessDevice (also in the Device Model). Subclasses exist where the various
“types” have different properties or associations, where the Working Groups felt that the classes
were critical or where further vendor-supplied extensions would be created. In other cases,
subclasses are not defined - but a "type" property is specified for a class. For example,
CIM_PointingDevice has no subclasses but has a Type enumeration distinguishing between
mice, track balls, etc. "Type" properties exist where subclasses would likely not have different
properties or associations, or where the majority of the Working Groups felt that the classes
would not have great impact/meaning in an enterprise level solution.

21. Modeling Methodology
Models are abstractions of “real world” objects and events. However, different abstractions or
perspectives may exist for the same “real world”. For example, for Logical Devices, a Product,
Physical, data flow or configuration perspective may be taken and would result in a very different
model, if designed in isolation.

In order to address these issues and aid in the modeling of Core and Common Model
extensions, the following methodology may be helpful.

• Define the various “perspectives” that the model(s) should address, and the information
required from each perspective

• Separate the information into object/class data and information specific to relationships
between objects

• Review the CIM Schemas for similar concepts

• Given the separation of the data and the existing CIM class hierarchy, define
appropriate classes and associations

• Attempt to place each property or attribute in one class only, and if it is not possible to
do this (for example, data must be duplicated), thoroughly analyze why

• Where possible, collapse similar abstractions from several models and perspectives

• Define levels of granularity for the data (from high level to complex), allowing
instantiation and detailed analysis to occur, when and as necessary

CIM Core Model White Paper Version 2.4

September 6, 2000 54 of 54

22. References
CIM Core and Common Models - Versions 2.0, 2.1, 2.2, 2.3 and 2.4 - Downloadable from
http://www.dmtf.org/spec/cims.html

Common Information Model (CIM) Specification, V2.2, June 14, 1999 - Downloadable from
http://www.dmtf.org/spec/cims.html

DMTF Specifications - Approved Errata - Downloadable from http://www.dmtf.org/spec/cims.html

Unified Modeling Language (UML) from the Open Management Group (OMG) - Downloadable
from http://www.omg.org/uml/

Desktop Management Interface (DMI) - Downloadable from http://www.dmtf.org/spec/dmis.html

Internet Engineering Task Force (IETF) - MIBs and Work Group information at
http://www.ietf.org

