
file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

,I Specification DSP0107

STATUS: Preliminary
Copyright © "2000" Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. DMTF specifications and documents may be reproduced for uses consistent
with this purpose by members and non-members, provided that correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and release cited should always be
noted."

COMMON INFORMATION MODEL (CIM)
INDICATIONS (FINAL DRAFT)

Version 2.5 Final Draft

December 14, 2000

Abstract
 The Common Information Model (CIM) is an object-oriented information model defined by
the Distributed Management Task Force (DMTF) that provides a conceptual framework for
describing management data [1].

This document describes CIM Indications and how they are used to communicate occurrences
of events in the CIM. This document also describes the classes that enable clients to
subscribe to CIM Indications including how to specify a desired mode of delivery. The
Specification for CIM Operations over HTTP defines the XML encoding for CIM Indications
over HTTP [3]. Other protocols may be defined in future releases.

Participants
 Many thanks to the following companies and organizations whose generous participation and
contribution in the Distributed Management Task Force Event Technical Work Group make this document
possible:

• BMC Software
• Cisco Systems
• Compaq Computer Corp.

Page 1

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

• EMC
• Evidian

• IBM
• Intel Corp.
• LSI Corp.
• Microsoft Corp.

• SNIA
• Smart Technology Enable
• Sun Microsystems
• Symantec Corp
• Tivoli Systems, Inc.

Change History

Version 1 1 Dec 1998 First internal review (J. Patrick Thompson, Microsoft)

Version 1.1 24 Jan 1999 Second internal review (Holger Dietrich, HP)
incorporating SysDev event paper and additional feedback

Version 1.2 22 Feb 1999 Merging alternate proposals for event type hierarchies
(Holger Dietrich, HP)

Version 1.3 26 Mar 1999 Refining Event type hierarchy according to feedback from
cs-events. Insert more detailed explanation of meta model
instantiation within the Core model.
(Holger Dietrich, HP)

Version 1.4 12 April 1999 Switching back to event type hierarhy as proposed by
WMI from Microsoft.
Refining meta model (method parameter, …).
(Holger Dietrich, HP)

Version 1.5 13 April 1999 Correcting typos, inserting corrected diagrams and MOF.
(Holger Dietrich, HP)

Version 1.6 Draft July 29 1999 Reflect output of Hillsboro meeting

Version 1.7 Draft Aug 24 1999 Reflect working group discussions

Verison 1.8 Draft Nov 10 1999 Incroporate Requirements analysis

Version 1.9 Draft Nov 15 1999 Remove CIM_object

Version 1.9.1 Draft Dec 8 1999 Outline reflecting 11/19 and 12/8 meetings

Page 2

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

Version 1.10 Draft Dec 29, 1999 Complete revision by J. Patrick Thompson, Rudyard
Merriam, and Stephen Schleimer

Version 1.11 Draft February 24, 2000 Embedding in new DMTF format. Editorial changes from
January F2F and Teleconferences through February 17,
2000 by Schleimer

Version 1.12 Draft March 24, 2000 Editorial changes from March F2F and Teleconferences
through March 16, 2000 by Shaw

Version 1.13 Draft April 12, 2000 Editorial changes by Schleimer

Version 1.14 Draft April 18, 2000 Editorial changes by Shaw to add to reference and
requirement sections

Version 1.15 Draft April 21, 2000 Editorial changes by Shaw to add review comments from
email and 4/20/00 teleconf; EventTime (not
GenerationTime), CIM_InstIndication (not LifeCycle),
CIM_ClassIndication (not MetaIndication), add discussion
on surpressing event storms in Filter example, Subscriber
identity property in CIM_Indication, CIM_IndSFDelivery,
finish requirement section.

Version 1.16 Draft May 9, 2000 Editorial changes by Schleimer: Add discussion of Filters
and Namespaces; update subscription description; discuss
multi-subscription to single Filter for single subscriber
behavior; discuss ReturnName in Filter and
CIM_Indication.

Version 1.17 July 26, 2000 Edited by Shaw to include changes resulting from Jun 27,
28 F2F at Intel in Portland: Alert hierarchy, DMI, TMN,
SNMP mapping, refined subscription model and
discussion. Including WG sessions thru 7/20/2000.

Version 1.18 August 7, 2000 Edited by Shaw to include changes to
CIM_AlertIndication.Severity, created appendices A -
Interop Issues, B - Requirements, C - Mapping other event
systems, Added CIM_ClassModification.PreviousClass,
changed CIM_ClassIndication.SourceDefinition to
SourceClass, corrected sundry errors in text.

Version 1.19

Final Draft

October 24, 2000 Edited by Shaw to include clarification text for rational in
model for ProcessIndication tree and clarification of the
role of Providers with respect to Indications. Added Filter
examples for AlertIndication and SNMPTrapIndication.
Removed CIM_ preface from most class names in
discussion text. Rrom 10/26/00 telecon vote: remove
FilterPath and add SubscriptionID;

Upon review & acceptance Version 1.19 will be progressed
to Version 2.5 to synch up with CIM specification level.

Version 2.5

Company Review

November 6, 2000 Added changes agreed upon at 11/2/00 teleconf: Change
AlertIndication.AlertType from "General." to "Primary
classification ..., Updated text for

Page 3

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

Draft AlertIndication.AlertType "7", Added the Override of
AlertType (to set the default = 7) to AlertInstIndication.,
Changed IndicationSubscription.SubscriptionID to string
SubscriptionAlias.

Version 2.5

Company Review

Final

November 9, 2000
Errata: 1.1 ‘filter is an SQL statement’ s/b ‘Filter contains a
Query ..’; chg’d all occurrences of EventTime to
IndicationTime; removed __PATH from InstModification
filter example 2 and removed redundant clause to check
previous state; remove [] from
InstMethodCall.MethodParameters and added text to
explain __MethodParameters ;
CIM_InstMethodCall.ReturnValue is just a string
(Removed EmbeddedObject qualifier); added text to specify
what DMTF Query Language MUST support; add name,
value, datatype arrays to SNMPTrapIndication; Glossary:
add Handler, update Filter; add new visios. Add text to
encoding for SubscriptionAlias.

Version 2.5g November 16,2000 F version VISIO - to allow generalization of
IndicationIdentifiers: changes the names of the
AlertIdentifier and CorrelatedAlerts properties in
CIM_AlertIndication to IndicationIdentifier,
CorrelatedIndications. To allow possible future promotion
of these properties higher in the object hierarchy, we must
have more generic names.
 g version of VISIO to remove REQUIRED from
SourceNamespace

Version 2.5f December 14, 2000 Cshaw added Corrections and minor edits from
 Agbabian 11/20/00. Also edits to: Glossary,
section 2.1.1 (CIM_InstMethodCall), 2.1.2, 2.2.1,
Filter examples 3 and 5, section 2.2.3 (added
Name, changed Owner). Chenged DMTF query
language to WBEM query language.
Removed reference to SubscriptionAlias as per
vote at Santa Monica F2F. Added filter example
to illustrate tagged filter in Query Select.

Editors
Stephen Schleimer, Cisco Systems, Incorporated
Christina Shaw, Compaq Computer Corporation
For the DMTF Events Working Group

This document can be located at: htwww.dmtf.org/members/tdc/wg-events/archive/Event_v25.doc
Abstract... 11

Participants... 11
Change History.. 22

Glossary... 66
1. Introduction... 88

1.1 Scope... 88

Page 4

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

1.2 Terminology.. 88
1.3 Overview.. 88
1.4 Representation... 99
1.5 Publication and Subscription... 99
1.6 Namespace and Subscription Management.. 1010

2. Modeling Events... 1111
2.1 CIM_Indication Hierarchy.. 1313
2.1.1 CIM_InstIndication.. 1414

CIM_InstCreation... 1515
CIM_InstDeletion... 1515
CIM_InstModification... 1515
CIM_InstMethodCall... 1616
CIM_InstRead... 1616

2.1.2 CIM_ClassIndication... 1616
2.1.3 CIM_ProcessIndication... 1717
2.2 Subscription Hierarchy... 2323

Circumstances under which indications are created.. 2525
Precision... 2525

2.2.1 CIM_IndicationSubscription.. 2525
2.2.2 CIM_IndicationFilter.. 2626
Filter Examples.. 2727

Filter Example 1 for InstIndication.. 2728
Filter Example 2 for InstIndication.. 2828
Filter Example 3 for AlertIndication.. 2829
Filter Example 4 for SNMPTrapIndication... 2929
Filter Example 5 for AlertIndication with embedded InstIndication.. 2929

2.2.3 CIM_IndicationHandler... 3030
CIM_IndicationHandlerXMLHTTP... 3031

3. References... 3131

Glossary
Term Definition

Alert / Event
Service

A service that provides higher level alert or event Indication processing such as a
persistent record of events of interest, unique Indication identity, guaranteed delivery,
etc.

AlertIndication A particular subclass of CIM_ProcessIndication that provides specific properties and
may include CIM_InstIndication and CIM SourceObject data.

Client A process that creates subscriptions and associates them with Indication filters and
Handlers for the purpose of receiving indications.

Delivery The process of transporting one or more indications to a subscriber. The method of
delivery is determined by the subscription process via the association between the
Indication Filter and the Handler instances.

Event An occurrence of a phenomenon of interest. Events are not published in CIM nor
can a client subscribe to them.

Filter A Filter is an object that defines the conditions that detect to trigger the occurrence

Page 5

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

of indications as directed by the query property of the filter.

Handler A Handler is an object that collects arbitrary Indications from Filters. A Handler
may format Indications to a particular syntax, and resend them to a sink or it may
send email, perform paging, or other associated actions like launching a process.

Indication The active representation of the occurrence of an event in CIM for which a
subscription exists. Specific delivery parameters for indications are included in the
subscription process. Indications are published (see Publication). Indications are
subscribed to through Filters that select them.

Projection That set of data extracted from an object (or objects) defined as components of an
indication.

Publication Registration of Indication definition. Certain indications are defined as part of CIM
others are defined by users. Querying the CIM repository allows clients to discover
which phenomena may give rise to an indication.

Query A description of the interesting characteristics of one or more indications. A query is
a component of a Filter.

Subscription A declaration of interest in one or more streams of indications

Trigger A description of a change of interest. Also considered to be the proximal cause of
an event. “The operational state of the line went from up to down. A line down
event occurred. A line down Indication might be generated.”

1. Introduction

The Methods and Events Working Group Charter:

The working group will review the syntax and meta schema for method declarations and ensure
that it is correct and implementable in the light of the proposed XML mapping. It will use the
XML mapping as a basis for proposing a method invocation based on or compatible with the
XML transport protocol.

The working group will also review the indications defined in the current meta schema. It will

Page 6

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

propose (or clarify) MOF extensions necessary to define indications and propose filtering and
aggregation mechanisms consistent with these. An event registration mechanism compatible with
the method invocation mechanism will also be provided.

1.1 Scope

This document describes CIM Indications and how they are used to communicate occurrences of events in the
CIM. The CIM Indication Schema includes the Indication and Subscription class hierarchies. Indications
carry salient event information for CIM objects as well as entities not modeled in CIM. The Subscription class
hierarchy provides the mechanism for client applications to subscribe to specific indications (e.g. event
registration). The associated Filter contains a Query parameter to specify the source instance parameters to
be returned with the indication. Companion documents, “CIM Indication MOF” [2] and “Specification for CIM
Operations over HTTP” [3] provide the MOF and xmlCIM encoding specifications.

This specification does not include event aggregation at this time. While it is recognized that this is a core
issue, the working group felt it would be useful to deliver the base framework (described in this document) in
CIM 2.5. In this way preliminary implementations that demonstrate the model’s viability may be achieved
sooner. It is intended that aggregation can be supported by the primitives defined herein and will be addressed
in the next version of this specification.

1.2 Terminology

The key phrases and words, MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY and OPTIONAL in this document are to be interpreted as
described in RFC 2119 [4]

1.3 Overview

The subject of events is complex as it covers a wide range of topics and scenarios. An event is typically
assumed to be a change in the state of the environment or a record of the behavior of some component of the
environment. For example, the state property for a service may go from Stopped to Started, indicating that the
service is now started. Or a device may be added to a machine resulting in a plug and play Indication
ultimately notifying the operating system that the device is present and should be configured with settings and
drivers in order for it to be usable.

An event may be a pervasive incident that occurs infrequently such as a system re-boot or it may reflect very
small scale, frequently occurring incidents, for example mouse-clicks. Many things can be affected. The
consequences of an event can last a long time.

The way that events are dealt with may also vary enormously. Some events may require immediate action on
the part of the observer. For example an ‘out of disk space’ event on a web server may require immediate
action to make disk space available. Some events may only be of interest at a later time. An example of the
interest at a later time is a ‘bandwidth utilization on an interface’ event that a billing application deals with only
during nightly billing reconciliation.

1.4 Representation

Page 7

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

In the context of this specification, the concrete Indication of the occurrence of an event is represented by an
instance of the CIM_Indication class. To improve readability, the redundant use of the 'CIM_' preface will
often be omitted in the text when discussing the members of the CIM_Indication class hierarchy.

Types of indications (representing different types of events) are denoted by Indication subclasses. These
include:

• InstIndication for modeling CIM life cycle events; instance creation, deletion, modification, method
invocation and read access

• ClassIndication for CIM schema life cycle events; class creation, deletion and modification.

• ProcessIndication for alert notifications associated with objects that may or may not be completely
modeled in CIM or do not correspond to a simple life cycle event; like low-level instrumentation alerts,
DMI alerts, SNMP traps and TMN events

Indication classes are described in section 2.

Instances of indications cannot be enumerated because they are transient objects (not guaranteed to have
persistence). Indications are only received after subscribing to them. They cannot be retrieved through
enumeration or ordinary query processing in a CIM Object Manager. This was considered to be a necessary
design constraint to ensure lightweight Indication processing. It is intended that specialized applications will be
devised which will add more sophisticated post processing computations to an Indication stream on behalf of
its clients. Such post processing may include creating unique keys, persistence, aggregation and correlation.
Aggregation and correlation will be modeled in a future CIM Indication specification version.

Thus indications in this model are not guaranteed to be uniquely identifiable. For example, if the time and date
stamp provided is insufficient to distinguish between instances of, say, InstModification, then those instances
are not identifiable unless the provider chooses to add an identifier or a logging entity exists which adds this as
a post processing function.

1.5 Publication and Subscription

A fundamental idea underlying the CIM approach to the representation of indications is the separation of
Indication publication and Indication subscription. The publication of an Indication is accomplished using the
same mechanism used for the publication of any other data in CIM; that is, through the declaration of classes
and properties. Publication of events also implies the creation of IndicationFilter instances.

A Subscription is expressed by the creation of an IndicationSubscription association instance that references
an IndicationFilter (a Filter) instance, and an IndicationHandler (a Handler) instance. A Filter contains the
query that selects an Indication class or classes. The size and complexity of the result delivered to the
subscriber is dictated by the query.

The CIM Object Manager is designed to process queries on behalf of managed object providers. However, it
is intended that CIM managed object providers may be designed (although not required) to handle ad hoc Filter
queries directly. The precise mechanism whereby providers communicate their respective capabilities to an
Object Manager is currently being defined (within the Interoperability work group) and targeted for CIM v2.6.

Notifications of Filtered events are delivered as instances of the Indication class. A Handler subclass instance
is used to specify the destination that is to receive the associated Indication stream. This version of the CIM

Page 8

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

Indication specification defines the IndicationHandlerXMLHTTP subclass that is used to deliver indications to
clients over HTTP and encoded as cim/XML. Other protocols may be defined in the future to support point to
point protocols, multi-cast delivery, email, paging, as well as associated actions like launching a process. Thus
the intent in naming this class IndicationHandler (rather than IndicationDelivery) is meant to convey that
handling an Indication can require more than delivery.

It is the intention of this specification that Indication instances are created only if there is an instance of
IndicationSubsription which associates the event Filter that can generate the Indication with the Handler
subclass that defines the precise handling mechanism.

If there is no provider capable of generating the requested Indication the instantiation of the
IndicationSubscription SHOULD fail. Likewise, if there is no instance of the requested IndicationHandler the
instantiation of the IndicationSubscription SHOULD fail.

The Modeling Events Section describes the properties and semantics of the CIM_Indication and Subscription
class hierarchies.

1.6 Namespace and Subscription Management

Indications and their properties are to be interpreted in the context of a single namespace. The
IndicationFilter.SourceNameSpace parameter is used to denote the namespace in which the event that
triggered the Indication occurred. This allows creation of all subscriptions in a single CIM namespace even if
the events of interest originate from a different namespace. This schema allows creating and examining all
Filters in a single namespace regardless of the origin of the events. In addition, since Filter and Handler are
subclasses of CIM_ManagedElement, Filters and Handlers can be managed by higher=level services.

2. Modeling Events

The event model has to meet two conflicting requirements. First, it has to be extensible allowing schema
designers to add new types of indications (events) in arbitrary ways reflecting unforeseen Indication structure
and usage. Second, it has to provide a basis for event analysis and applications that interpret the event flow
for aggregation, correlation and throttling purposes without the application having to be aware of the full range
of event types implied by the first requirement. As mentioned, while it is intended that this specification
support aggregation, correlation and throttling, the exact mechanism for doing this is deferred to a future
version.

In this proposal, the occurrence of an event is represented as an instance of the Indication class. Figure 1
illustrates the proposed Indication type hierarchy that addresses the requirements for event processing in CIM
as enumerated in the requirements document [6].

Page 9

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

Page 10

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

Figure 1 CIM_Indication type hierarchy

2.1 CIM_Indication Hierarchy

An abstract Class, CIM_Indication is the base class from which all other indications inherit. CIM_Indication
has the following property:

• datetime IndicationTime

The value of the IndicationTime is as close as possible to the time of the underlying event. If the time of the
event cannot be determined the IndicationTime SHALL be NULL.

Note: Due to implementation limitations IndicationTime is not guaranteed to be accurate enough to infer the
order of events.

As mentioned above, Indication classes do not themselves contain any keys because they are by design not
enumerable. It would be too much of a burden for the Object Manager to store and process queries over the
vast number of Indication instances expected to be generated even in an average implementation (about 1500
objects). This level of processing can be accomplished more efficiently outside the Object Manager by an
entity that subscribes to all or a particular subset of indications and then stores and processes them on behalf
of its client entities.

The immediate subclasses of CIM_Indication are:

• CIM_ClassIndication

Page 11

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

• CIM_ InstIndication

CIM_ProcessIndicationClassIndication and InstIndication (LifeCycle indications) provide a convenient intuitive
mechanism for clients to subscribe to indications triggered by real world events that change the state of CIM
Objects (InstIndication) or the CIM Schema (ClassIndication). That is events triggered by the creation,
deletion, or modification of class definitions or instances, or events triggered by a read access or method
invocation on instances. Using ad hoc queries in IndicationFilters, clients can set up any number of Indication
scenarios that need not have been ‘programmed’ into the managed object instrumentation.

ProcessIndications allow clients to subscribe to a wide variety of operational notifications (AKA alerts and
traps) in the same simple manner. While it can be successfully argued that almost any LifeCycle Indication
can be used to provide operational notifications, there are two fundamental reasons for modeling operational
notifications as a separate hierarchy.

Firstly, operational notifications tend to be the result of error, warning or other abnormal system conditions. As
such, it is important to convey the associated conditions that prevailed that gave rise to the anomalous condition
as well as the perceived severity and consequences. Thus parameters like, PerceivedSeverity,
ProbableCause, AlertType, and RecommendedAction are an fundamental part of a standard notification
scheme.

However, adding these parameters to the LifeCycle Indication hierarchy would burden the general case,
normal LifeCycle transformations, with a specific case, anomalous potentially system threatening
transformations. That is each LifeCycle class would need to contain the parameters: PerceivedSeverity,
ProbableCause, AlertType, and RecommendedAction, even though they are only meaningful when the
triggering event has potentially adverse or meaningful operational consequences.

The second reason to separate the two, is to give low level managed objects a simple mechanism to indicate
an exceptional condition. Consider an operating system kernel that needs to indicate an exception, perhaps
due to a bad parameter in a context switch table. While the operating system is certainly modeled as a CIM
object, it is not possible at this level of execution (context switch) for the OperatingSystem provider to
recognize the triggering event that would give rise to the LifeCycle Indication even if it modeled the parameter
“ContextSwitchTable”.

Operating systems and other managed systems (Storage, Network, Application, etc.) are typically
instrumented to issue operational notifications. ProcessIndication classes make it very easy to convert the
underlying system notifications into ProcessIndications. The consumer (client) for these indications might be
the OperatingSystem provider or some other provider capable of correlating Process and LifeCycle
Indications. Since the OperatingSystem provider has a greater view of the OperatingSystem object and its
associated managed objects it is possible that it could provide more meaningful context than is possible with a
single ProcessIndication.

The ability for instrumentation-level providers to publish clear, concise and relatively inflexible (perhaps even
hard coded) notifications is a basic requirement [6]. General providers and some instrumentation can clearly
do more like process Filters and support arbitrary queries. As noted, the precise mechanism whereby a
provider communicates its ability to process Filters or support arbitrary queries will be specified by the
Interoperability technical working group in a future CIM specification.

2.1.1 CIM_InstIndication

An abstract subclass of CIM_Indication denoting life cycle changes of instances (creation, deletion,
modification) or method calls to instances defined in the CIM or reads of instances. InstIndication has the

Page 12

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

following property:

• [EmbeddedObject, Required[1]] string SourceInstance

SourceInstance provides a snap shot of the properties of the source instance for which the event occurred.
This content is the information provided by projection during the filtering process (described below). The
representation of SourceInstance is described in [8]. See each of the subclasses for further discussion.

SourceInstance (and PreviousInstance of CIM_InstModification) represent two distinct concepts. When
considered in the context of a Filter, SourceInstance (and PreviousInstance) represent states of the object that
participated in the determination of the occurrence of an event. Thus, it makes sense, in the context of the
Filter (specifically the query) to operate on SourceInstance (PreviousInstance) as though it were an object.

When considered in the context of an Indication (as a subscriber might see it), SourceInstance
(PreviousInstance) is actually a set of properties as determined by the projection part of the query in the Filter
(for example, the select clause of an SQL query). It is not an object and should not be thought of as an object
instance. It is important to realize that both SourceInstance and PreviousInstance are known by the entity that
recognizes the fact of the filtered event.

CIM_ InstIndication provides the following subclasses (representing five instance life cycle events):

• CIM_InstCreation

• CIM_InstDeletion

• CIM_InstModification

• CIM_InstMethodCall

• CIM_InstRead

CIM_InstCreation

A concrete class. When an instance of an object is created, a creation event occurs. If appropriate (see 2.2
), a CIM_InstCreation Indication is created. The created instance is recorded in the inherited attribute
SourceInstance.

Note: Indications are not treated like other objects for the purpose of Indication generation. Thus, creation of
an instance of CIM_InstCreation is not an event and can not be filtered for the purpose of creating an
Indication stream.

CIM_InstDeletion

A concrete class. When an instance of an object is deleted, a deletion event occurs. If appropriate (see 2.2)
a CIM_InstDeletion Indication is created. A projection of the deleted instance is recorded in the inherited
attribute SourceInstance.

CIM_InstModification

A concrete class. When an instance of an object is modified, a modification event occurs. If appropriate
(see 2.2), a CIM_InstModification Indication is created. A projection of the modified state is recorded in the
inherited attribute SourceInstance. InstModification has the following property:

Page 13

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

• [EmbeddedObject, Required] string PreviousInstance

The PreviousInstance property has the same properties as that of the inherited property, SourceInstance.
PreviousInstance records a projection of the appropriate properties of the previous state of the modified object
(as defined by the Filter criteria).

CIM_InstMethodCall

A concrete class. When an instance's method is called, a method call event occurs. If appropriate (see 2.2),
a CIM_InstMethodCall Indication is created. A projection of the instance for which the method call is made is
recorded in the inherited attribute SourceInstance. InstMethodCall has the following properties:

• [Required] string MethodName

• [EmbeddedObject] string MethodParameters

• string ReturnValue

• [Required] Boolean PreCall

MethodName is the name of the method invoked.

MethodParameters are the parameters of the method, formatted as an EmbeddedObject (with a predefined
class name of __MethodParameters.ReturnValue may be NULL, depending on the value of the PreCall
property. When PreCall is TRUE, this property is NULL describing that there is no method return value (since
the method has not yet executed). When PreCall is FALSE, ReturnValue contains a string representation of
the method's return value.PreCall is a Boolean indicating whether the Indication is sent before the method
begins executing (TRUE) or when the method completes (FALSE).

CIM_InstRead

A concrete class. When an instance of an object is read, a read event occurs. If appropriate (see 2.2), a
CIM_InstRead Indication is created. The read instance is recorded in the inherited attribute SourceInstance.
Of course, it is not usual to record read events in general. However, in certain security contexts, it may be
necessary to note each time a certain object is read to provide an appropriate level of control. Recall that
indications are generated for events only if appropriate.

2.1.2 CIM_ClassIndication

An abstract class. When schema changes are made, schema change events occur. The model provides
Indication of these events with the CIM_ClassIndication class hierarchy. In parallel with the components of
the InstIndication tree, ClassIndication has the three subclasses:

• CIM_ClassCreation

Page 14

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

• CIM_ClassModification

• CIM_ClassDeletion

These correspond to schema creation, schema modification, and schema deletion events respectively.
CIM_ClassIndication has a single property:

• [EmbeddedObject, Required] ClassDefinition

ClassDefinition is the definition of the class for which the Indication was created.

ClassModification has a single property:

• [EmbeddedObject, Required] PreviousClassDefinition

PreviousClassDefinition is the definition of the class before it was modified.

The Interoperability work group will define the representation of a ClassDefinition and
PreviousClassDefinition.

2.1.3 CIM_ProcessIndication

An abstract superclass for specialized Indication classes, addressing specific changes and alerts published by
instrumentation. ProcessIndications support instrumentation-level providers' requirement to publish clear,
concise and (sometimes) relatively inflexible notifications. In many cases, this must be done using minimum
system requirements.

It is expected and desired that clients will use the InstIndication classes for most CIM instance related events;
e.g. lifecycle events create, delete, modify, method call and read.However, it is not always convenient or
appropriate to model events in a system through life cycle events even though it may always be possible to do
so. For example, when multiple independent finite state machines are communicating state transitions (as in a
distributed PBX, for example) it is preferable to state explicitly that a particular state change has occurred
rather than implicitly as the consequence of the change of an attribute of an object. CIM_ProcessIndication is
created as a super class for such explicit indications.

 NOTE: Triggers causing ProcessIndications may be outside of the CIM. It is generally recommended, to
the extent possible, that the event behavior of a system be explicitly modeled using CIM instance and instance
property changes.

CIM_ProcessIndication has the following subclasses:
• SNMPTrapIndication
• AlertIndication

As noted, rather than burden the general purpose InstIndications lifecycle classes with information that
pertains only in special circumstances it was decided to model alerts as a subclass of ProcessIndication.

Page 15

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

Thus, CIM_AlertIndication is explicitly designed to model alert and or error notifications in a CIM system. A
subclass of CIM_AlertIndication, CIM_AlertInstIndication, provides a mechanism to integrate other domain
notifications with CIM_InstIndications.

ProcessIndications are described in the following sections.

CIM_SNMPTrapIndication

A concrete class for mapping an SNMP Trap to CIM based on the IETF RFC 1157. The usefulness of this
class is to describe common trap semantics. Naturally, a complete understanding of any trap data received
relies on the Indication recipient having access to the sender's MIB. Understanding can be improved by
mapping the SNMP managed object domain to CIM.

CIM_SNMPTrapIndication contains the following parameters:
• string Enterprise
• string AgentAddress
• [Enum] uint16 GenericTrap
• uint32 SpecificTrap
• datetime TimeStamp
• string VarBindNames[]
• uint16 VarBindSyntaxes[]
• string VarBindValues[]

Enterprise (based on PDU.IETF|RFC1157-TRAP-PDU.enterprise) describes the type of object generating
the trap.

AgentAddress (based on PDU.IETF|RFC1157-TRAP-PDU.agent-addr) provides the address of the object
generating the trap.

GenericTrap (based on PDU.IETF|RFC1157-TRAP-PDU. generic-trap) is an enumerated value that
describes the generic trap type. The following values are defined:
• 0 - coldStart trap signifies that the sending protocol entity is reinitializing itself such that the agent's

configuration or the protocol entity implementation may be altered.
• 1 - warmStart trap signifies that the sending protocol entity is reinitializing itself such that neither the agent

configuration nor the protocol entity implementation is altered.
• 2 - linkDown trap signifies that the sending protocol recognizes a failure in one of the communication links

represented in the agent's configuration. The Trap-PDU of type linkDown contains as the first
element of its variable-bindings the name and value of the ifIndex instance for the affected
interface.

• 3 - linkUp trap signifies that the sending protocol entity recognizes that one of the communication links
represented in the agent's configuration has come up. The Trap-PDU of type linkUp contains as
the first element of its variable-bindings, the name and value of the ifIndex instance for the
affected interface.

• 4 - authenticationFailure trap signifies that the sending protocol entity is the adressee of a protocol

Page 16

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

message that was not properly authenticated. While implementations of SNMP must be capable
of generating this trap, they must also be capable of suppressing the emission of such traps via an
implementation-specific mechanism

• 5 - egpNeighborLoss trap signifies that an EGP neighbor for whom the sending protocol entity was an
EGP peer has been marked as down and the peer relationship no longer pertains. The Trap-PDU
of type egpNeighborLoss contains as the first element of its variable-bindings, the name and value
of the egpNeighAddr instance for the affected neighbor.

• 6 - ? enterpriseSpecific? trap signifies that the sending protocol entity recognizes that som
enterprise-specific event has occurred. The specific-trap field identifies the particular trap which
occurred.

 ? SpecificTrap? (based on PDU.IETF|RFC1157-TRAP-PDU.specific-trap) identifies the specific trap code

? TimeStamp? (based on PDU.IETF|RFC1157-TRAP-PDU. time-stamp) is the time elapsed between the las
(re) initialization of the managed entity and the generation of the trap.

? VarBindNames? array (based on PDU.IETF|RFC1157-TRAP-PDU.variable-bindings) contains Object namin
information (an ? OID?) from the 'variable binding' portion of the Trap. This array is correlated with th
? VarBindSyntaxes? and ? VarBindValues? arrays. Each entry is related to the entries in the other arrays, that
located at the same index. In this way, the variable binding's name/syntax/value ? tuple? can be constructe

? VarBindSyntaxes? array (based on PDU.IETF|RFC1157-TRAP-PDU.variable-bindings) contains the Objec
syntax information (defined as an enumerated value) from the 'variable binding' portion of the Trap. This array
is correlated with the ? VarBindNames? and ? VarBindValues? arrays. Each entry is related to the entries in
other arrays, that are located at the same index. In this way, the variable binding's name/syntax/value ? tuple? ca
be constructed.

? VarBindValues? array (based on PDU.IETF|RFC1157-TRAP-PDU.variable-bindings) contains an ? OctetStri
representing object value information from the 'variable binding' portion of the Trap. This array is correlated
with the ? VarBindNames? and ? VarBindSyntaxes? arrays. Each entry is related to the entries in the other arra
that are located at the same index. In this way, the variable binding's name/syntax/value ? tuple? can b
constructed.

?CIM_AlertIndicatio

A concrete class for CIM alert indication. ? AlertIndication? is a standard notification Indication that contain
information about an alerting situation (like ? PerceivedSeverity? , ? ProbableCause? , ? RecommendedAction
Trending) that may or may not be modeled by CIM instances. ? AlertIndications? that are not dependent on
CIM instance or do not wish to include ? InstIndication? data SHOULD use ? AlertIndication? or subclass h It
is expected that ? DMI? recast indications will be subclassed from her See Appendix C, Mapping Existing
Models Into CIM.

? CIM_AlertIndication? contains the following parameter

Page 17

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

• string Description
• string ? AlertingManagedElemen
• [Required, ? Enum?] uint16 ? AlertT
• string ? OtherAlertType
• [Required, ? Enum?] uint16 ? PerceivedSever

• string ? OtherSeverit
• [Required, ? Enum?] uint16 ? ProbableCa
• string ? ProbableCauseDescriptio
• [? Enum?] uint16 Trendi
• string ? IndicationIdentifie
• string ? CorrelatedIndications?
• string ? RecommendedActions?

Description (based on Recommendation.ITU|X733.Additional text) is a string that provides a short description
of this alert.

? AlertingManagedElement? provides identifying information about the entity (instance) for which this Indicatio
was generated. If the entity is modeled in the CIM Schema, this property contains the path of the instance
encoded as a string parameter. If the entity is not a CIM instance, the property contains some identifying
string that names the entity for which the Alert was generated.

? AlertType? (based on Recommendation.ITU|X733.Event type) is an enumeration that provides a primar
classification of the indication. The following values are defined:
• 1 - Other State Change. The indication's ? OtherAlertType? property conveys its classification

• 2 - Communications Alert. An Indication of this type is principally associated with the procedures
and/or processes required to convey information from one point to another.

• 3 - Quality of Service Alert. An Indication of this type is principally associated with a degradation or errors
in the performance or function of an entity.

• 4 - Processing Error. An Indication of this type is principally associated with a software or processing
fault.

• 5 - Device Alert. An Indication of this type is principally associated with an equipment or hardware fault.
• 6 - Environmental Alert. An Indication of this type is principally associated with a condition relating to an

enclosure in which the hardware resides, or other environmental considerations.
• 7 - Model Change. The Indication addresses changes in the Information Model and not the managed

environment.
• 8 - Security Alert. An Indication of this type is associated with security violations, detection of viruses, and

similar issues.

? OtherAlertType? is a string describing the Alert type when the ? AlertType? property value is set to 1,Other St
Change.

? PerceivedSeverity? (based on Recommendation.ITU|X733.Perceived severity) is an enumerated value tha
describes the severity of the ? AlertIndication? from the ? notifier's? point of v The following values are
defined:

• 0 - Unknown SHOULD be used when the perceived severity is unknown.
• 1 - Other, by CIM convention, SHOULD be used to indicate that the perceived severity value can be

Page 18

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

found in the ? OtherSeverity? property
• 2 - Information SHOULD be used when ? AlertIndication? is purely informationa
• 3 - Warning SHOULD be used when it's appropriate to let the user decide if action is needed.
• 4 - Minor SHOULD be used to indicate action is needed, but the situation is not serious at this time.
• 5 - Major SHOULD be used to indicate action is needed NOW.
• 6 - Critical SHOULD be used to indicate action is needed NOW and the scope is broad (perhaps an

imminent outage to a critical resource will result).
• 7 - Fatal SHOULD be used to indicate an error occurred, but it's too late to take remedial action.

? OtherSeverity? is a string describing the ? PerceivedSeverity? when the ? PerceivedSeverity? property value is s
1,Other.

? ProbableCause? (based on Recommendation.ITU|X733.Probable cause) is an enumerated value that describe
the probable cause of the situation which resulted in the ? AlertIndication? . The following values are defined

• Unknown
• Other
• Adapter Error
• Application Subsystem Failure
• Bandwidth Reduced
• Connection Establishment Error
• Communications Protocol Error
• Communications Subsystem Failure
• Configuration/Customization Error
• Congestion
• Corrupt Data
• CPU Cycles Limit Exceeded
• Dataset/Modem Error
• Degraded Signal
• Denial of Service Detected
• ? DTE-DCE? Interface Err
• Enclosure Door Open
• Equipment Malfunction
• Excessive Vibration
• File Format Error
• Fire Detected
• Flood Detected
• Framing Error
• Hardware Security Breached
• Humidity Unacceptable
• HVAC Problem
• I/O Device Error
• Input Device Error

Page 19

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

• Invalid Access of Data Detected
• LAN Error
• Non-Toxic Leak Detected
• Local Node Transmission Error
• Login Attempts Failed
• Loss of Frame
• Loss of Signal
• Material Supply Exhausted
• ? Multiplexer? Probl
• Out of Memory
• Output Device Error
• Performance Degraded
• Power Problem
• Pressure Unacceptable
• Previous Alert Cleared
• Processor Problem (Internal Machine Error)
• Pump Failure
• Queue Size Exceeded
• Receive Failure
• Receiver Failure
• Remote Node Transmission Error
• Resource at or Nearing Capacity
• Response Time Excessive
• Retransmission Rate Excessive
• Security Credential ? MisMatc
• Software Error
• Software Program Abnormally Terminated
• Software Program Error (Incorrect Results)
• Software Virus Detected
• Storage Capacity Problem
• Temperature Unacceptable
• Threshold Crossed
• Timing Problem
• Toxic Leak Detected
• Transmit Failure
• Transmitter Failure
• Underlying Resource Unavailable
• Version ? MisMatch

? ProbableCauseDescription? is a string that provides additional information related to the ? ProbableCau

Trending (based on Recommendation.ITU|X733.TrendIndication) is an enumeration (unit 16) that provides
information on trending. The following values are defined:

Page 20

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

• Unknown
• Not Applicable
• Trending Up
• Trending Down
• No Change

? IndicationIdentifier? (based on Recommendation.ITU|X733.Notification identifier) is an identifier for th
? AlertIndication? . This property is similar to a key value in that it can be used for identification, when correlatin
? AlertIndications? (see the ? CorrelatedIndicatons? array). Its value should be unique as long as correla
? AlertIndications? are reported, but may be reused or left NULL if no future ? AlertIndications? will reference it
their ? CorrelatedIndicatons? arra

? CorrelatedIndicatons? (based on Recommendation.ITU|X733.Correlated notifications) is list o
? IndicationIdentifiers? whose notifications are correlated with (related to) this on

? RecommendedActions? (based on Recommendation.ITU|X733.Proposed repair ? actions)is? an array of free f
descriptions of the recommended actions to take to resolve the cause of the notification.

?CIM_ThresholdIndicatio

A concrete subclass of ? CIM_AlertIndication? carrying additional threshold information related to th
notification. This subclass is used when one of the ? ProbableCauses? is set to 53, Threshold Crosse
? CIM_ThresholdIndication? has the following propertie

• string ? ThresholdIdentifie
• string ? ThresholdValu
• string ? ObservedValu

? ThresholdIdentifier? (based on Recommendation.ITU|X733.Threshold information) is a string describing th
threshold or naming the property that represents the threshold, if modeled in the CIM hierarchy. In the latter
case, the value should be written as <schema name>_<class name>.<property name>.

? ThresholdValue? (based on Recommendation.ITU|X733.Threshold information) is a string holding the curren
value of the threshold. This is modeled as a string for universal mapping, similar to the ? CIM_Sensor? propertie
in the Device Model.
? ObservedValue? (based on Recommendation.ITU|X733.Threshold information) is a string holding the curren
reading value that exceeds the threshold. This is modeled as a string for universal mapping, similar to the
? CIM_Sensor? properties in the Device Mode

?CIM_AlertInstIndicatio

A concrete subclass of ? CIM_AlertIndication? that can return a ? CIM_InstIndication? instance when reques
The embedded ? InstIndication? instance provides the connection between the ? AlertIndication? instance and
? InstIndication? instance containing the projection of the target CIM object instance that gave rise to th
? AlertIndication? . CIM domain mapped models (e.g. ? DMI? and ? TMN?) may use this class to r
? AlertIndications? with target CIM instance Providers capable of high level system analysis can use this
subclass to provide additional information (? PerceivedSeverity? , ? ProbableCause? , ? RecommendedActions? [],

Page 21

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

with CIM object life cycle events.

? CIM_AlertInstIndication? has the following propertie
• [Override ("? AlertType? ")] uint16 ? AlertType?
• [? EmbeddedObject? , Required] ? IndObj

The ? AlertTyp is always set to 7, “Model Change”, for ? AlertInstIndication This is done because: 1) the
primary purpose of ? AlertInstIndication? is to add Alert data to a ? LifeCycle? Indication; and 2) ? LifeC
Indications deal with 'model changes'.

? IndObject? contains the ? CIM_InstIndication? that is part of this indicat As always, only the properties
selected by the Indication Filter are included. The ? InstIndication? elaborates the meaning of the ? AlertIndicati
with change type (? CIM_InstIndication? class) and object properties (? SourceInstance? and ? PreviousInst
values, depending upon the type of the embedded indication).

2.2 Subscription Hierarchy

The Subscription hierarchy specifies how clients subscribe to and receive indications.

Two classes and an association comprise the Subscription hierarchy:

• ? CIM_IndicationFilte

• CIM_ ? IndicationHandle

• ? CIM_IndicationSubscription? (associatio

? CIM_IndicationFilter? defines a stream of indications, ? CIM_IndicationHandler? defines how and where
deliver the Indication stream, and ? CIM_IndicationSubscription? associates a Filter instance with a Handle
instance for a particular Indication stream.

Clients instantiate a Handler to express interest in receiving indications from one or more Filters. Clients
create an instance of ? IndicationSubscription? to associate a Filter to a Handle This is done for each Filter
from which indications are to be delivered. The Filter Query property allows the client to specify only those
properties in the source object that it desires to be included in the Indication when the event occurs.

NOTE: CIM event indications are WYSIWYG – What you subscribe (to) is what you get.

Figure 2 illustrates the Subscription hierarchy.

Page 22

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

Figure 2 Subscription Hierarchy

Circumstances under which indications are created

Events occur continuously. Indications SHOULD only be created when there are instances of a Filter and a
Handler associated by a subscription. For example, if there is no Filter selecting read indications for a
particular class OR there are no Handlers bound to Filters for read indications for a particular class, then no
indications for read access to instances of that class SHOULD NOT be generated. It is recognized that some
providers will not have the ability to so distinguish.

The Interoperability technical working group will define the mechanism whereby the fact of Filter publication
and/or subscriber binding may be communicated to providers to aid providers in adhering to this requirement.

Precision

There is no implication regarding when, in the real world the event took place. There is not even any
implication that other similar events did not take place before, during, or after the detection of this particular
event. For example, consider a Filter that recognizes status changes from "ok" to "degraded". Now suppose
that for some real world object status changes from ok to degraded and back again in 100 milliseconds.

Page 23

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

Consider various detection strategies. First, imagine that the process that changes the value of the status
variable from ok to degraded also evaluates the Filter criterion. Then we may assume that the generation of
indications would be reliable. Now, imagine that there is a monitor of the status variable that polls the value
every 50 milliseconds and performs the Filter criterion evaluation. We may assume in this case as well that
the generation of indications would be reliable. Now, suppose that we again have an external monitor, but that
the polling interval is 100 seconds. In this case we would expect that Indication generation would be
unreliable. We assume that the reliability of the generation of indications is a function of the resolution of the
observation of the events for which indications are generated.

The Interoperability technical work group will provide the mechanism that allows a provider to communicate
its precision capabilities to an Object Manager and allows an Object Manager to pass this information along to
an interested client. Similarly, as noted above, the Interoperability technical work group will define the
mechanism that enables providers to specify which indications they are capable of providing including whether
or not they are capable of processing Filters or parsing queries.

2.2.1 ?CIM_IndicationSubscriptio

A concrete association class. A client creates a ? CIM_IndicationSubscription? to direct a flow of indication
from a particular Filter and Handler. The flow is directed from the referenced Filter to the referenced
destination or process in the Handler. A client may have many subscriptions linking many Filters to many
Handlers.

? CIM_IndicationSubscription? contains the following properties
• [Key] ? CIM_IndicationFilter? REF Filt
• [Key] ? CIM_IndicationHandler? REF Handl

Filter defines the criteria and data of the possible Indications of this subscription.

Handler defines how possible Indications of this Subscription are handled; e.g. HTML delivery mechanism,
email, pager, process invocation, etc.

2.2.2 ?CIM_IndicationFilte

A concrete subclass of ? CIM_ManagedElement? . ? CIM_IndicationFilter? defines the criteria for generating
Indication and what data should be returned in the indication. It is derived from ? CIM_ManagedElement? t
allow modeling the dependency of the Filter on a specific service.

 Filter publication occurs in the same fashion as any CIM object; that is through the existence of instances of
? IndicationFilters? in the CIM repositor Any entity (Indication producers or consumers) may create an
instance of a ? CIM_IndicationFilter? , informing CIM clients of the kind of indications to which they ma
subscribe. An Indication SHOULD only be generated when the Filter Query condition evaluates to TRUE
AND there is a subscription associated with the Filter. ? FilterIndication? has the following propertie

Page 24

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

• [Key] String ? SystemCreationClassNam

• [Key] String ? SystemNam

• [Key] String ? CreationClassNam

• [Key] String Name

• [Required] ? SourceNameSpac

• [Required] String Query

• [Required] String ? QueryLanguag

? SystemCreationClassName? provides a System's ? CreationClassName? . A Filter is defined in the context o
? CIM_System? , where it is hosted or to which it applies. In a future release, a weak relationship will be explicitl
added to the model. This is not being done now to allow further refinement of the Filter definition and its
inheritance tree. Keys are being defined now to allow the class to be instantiated.

 ? SystemName? provides a System's Name. A Filter is defined in the context of a ? CIM_System? , where it
hosted or to which it applies. In a future release, a weak relationship will be explicitly added to the model. This
is not being done now to allow further refinement of the Filter definition and its inheritance tree. Keys are
being defined now to allow the class to be instantiated.

? CreationClassName? indicates the name of the class or the subclass used in the creation of an instance. Whe
used with the other key properties of this class, it allows all instances of this class and its subclasses to be
uniquely identified.

Name is the name of the Filter.

? SourceNamespace? is the path to a local namespace where the indications originate. If NULL, the namespac
of the Filter registration is assumed.

The Query property defines what indications ranging over what objects should return which properties to a
subscriber. The Query expression defines the ? condition(s?) under which Indications will be generate For
some Indication classes, the query expression may also define the instance properties to be copied to the
? CIM_InstIndication's? ? SourceInstance? and ? PreviousInstance? properties. Query language semantics in
projection (e.g., Select), range (e.g., From) and predicate (e.g., Where).

The ? QueryLanguage? parameter is the language in which the query is expresse ? QueryLanguage? indicate
how to interpret the Query. ? QueryLanguage? semantics MUST include projection (e.g. Select), range (e.g
From) and predicate (e.g. Where). The WBEM Query Language [7] MUST support instance property
projection, that is a mechanism to select particular properties defined in the indication class to be included in
the indication object. The projection may include static values that can be for the purpose of tagging the
indication objects. In addition the WBEM Query Language MUST support the ability to project meta data
such as object path and instance class. The WBEM Query Language MUST also support the ISA operator.

Range specifies the Indication class to which a Filter applies. This implies a potential stream of indications.
The predicate defines the conditions under which indications may be generated. All the clauses of the
predicate are qualified by Indication properties. For example, ? SourceInstance? , ? PreviousInstance? ,
? IndicationTime? all may be used in the predicate of the query. ? QueryLanguage? property includes vers
information.

The specification of the query language is outside the scope of the Indication specification. The Indication
specification does not restrict the ? CIM_IndicationFilter? to a single query language, however an implementatio

Page 25

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

of the Indication specification MUST support the DMTF Query Language [7].

Filter Examples

Queries are used in Filters to refine Indication selection. The following are some examples of queries and
their projections:

Filter Example 1 for ? InstIndicatio

An application interested in creating a Filter to track the creation of devices might create a Filter whose query
was the following:

SELECT *
FROM ? CIM_InstCreatio? ?
WHERE ? SourceInstance? ISA ? CIM_LogicalDev

The application would subscribe by creating a ? CIM_IndicationSubcription? instance containing the reference t
the Filter (with the above query) and the desired Handler (for ? IndicationHandlerXMLHTT the Destination
parameter contains the desired URL for delivery.)

The Interoperability technical work group will define how result is returned; format and content [3].

Filter Example 2 for ? InstIndicatio

An application interested in receiving an Indication when the managed device object,
"? FooBar_LogicalNetworkDevice? ", status property changes to "degraded" might create a Filter with th
following query:

SELECT ? SourceInstance.Name? , ? SourceInstance.Descript

FROM ? CIM_InstModificatio

WHERE ? SourceInstance? ISA ? FooBar_LogicalNetworkDevice?

 ? SourceInstance.Status? == "Degraded" A

 ? PreviousInstance.Status? <> ? SourceInstance.Sta

Because the application is looking for modifications to the state of a CIM object, it Filters on
? CIM_InstModification? Indication Because the application is only interested in status changes to ‘Degraded’
in devices modeled using the "? FooBar_LogicalNetworkDevice? " object, thWHERE clause restricts the object
to that type with Status value of ‘Degraded’. This query returns only the instance Name and Description of
the network device that has become degraded.

Page 26

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

The ‘PreviousInstance.status <> ? SourceInstance.statu’ clause is used here to illustrate how a client may
suppress unwanted repetitive events after a threshold condition has been triggered.

The Interoperability technical work group will define how often and under what circumstances the condition is
evaluated. The assumption that would usually be made is that it is evaluated when the ? CIM_InstIndication
condition (modified, created, etc.) is satisfied. This would then deal with the problem of an unchanging state
causing multiple Indications [3].

Filter Example 3 for ?AlertIndicatio

Subscribe to events where ?PerceivedSeverity? is "Major" and the quality of service of the managed object i
trending toward critical.

SELECT ? AlertingManagedElement? , ? ProbableCause? , ? ProbableCauseDescripti
? RecommendedAction

FROM ? CIM_AlertInstIndicatio

WHERE ? PerceivedSeverity? =“Major” AND

? AlertType? == "Quality of Service" A

Trending == "Trending Up"

This query returns the ?AlertingManagedElement? containing the path of the alerting C object (or other Domain
identifying string if it is not a CIM object), an enumerated value of the probable cause of the alerting situation to
support automated programmatic handling and a textual description of the probable cause and the
recommended actions for the human operator to view. Other variations of this query might contain the
?AlertIdentifier? (used to identify this instance) and the ?CorrelatedAlerts? property that contains an array of ot
?AlertIndications? related to this one, thus allowing subscribers to correlate multiple ?AlertIndicatio

Filter Example 4 for ?SNMPTrapIndicatio

Subscribe to all traps from Compaq Computer Corporation devices signaling a link down error.

SELECT ? AgentAddres

FROM ? CIM_SNMPTrapIndicatio

WHERE Enterprise == “1.3.6.1.4.1.232” AND

? GenericTrap? == "Link Dow

The query returns the address of the object generating the trap alert (as defined by ? IETF
RFC1157-TRAP-PDU.agent-addr). A subscriber capable of processing ? SNMP? ? MIBs? in general the
Compaq Computer Corporation ? MIBs? in particular could have subscribed to the unprocessed contents of th
trap by Selecting the ? SNMPTrapIndication.VariableBindings? propert

Page 27

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

Filter Example 5 for ?AlertIndication? with embedded ?InstIndicat

Subscribe to events where severity is "Critical" due to a change in the temperature in any logical device.

SELECT *

FROM ? CIM_AlertInstIndicatio

WHERE ? PerceivedSeverity? =“Critical” AND

? IndObject? ISA ? CIM_InstModificat AND

? IndObject.SourceInstance.Temperature? > 80 A

? IndObject.SourceInstance? ISA ? CIM_LogicalNetworkDevice?
? IndObject.PreviousInstance.Temperature? <=

This query triggers when a CIM ? LogicalNetworkDevice? temperature exceeds 80 and the condition has
“Critical” severity. The WHERE clause phrase ‘IndObject ISA ? CIM_InstModificatio’ asserts that alert
indications from this Filter will only be generated for ? CIM_InstModification The second ISA asserts that only
modifications to ? CIM_LogicalNetworkDevices? will be examine '? IndObject.PreviousInstance.Temperature
<= 80' ensures that this Indication is only triggered when the temperature of the device had been less than or
equal to 80 and is now greater than 80. This clause also insures that any additional changes to temperature
above the 80 will NOT cause additional indications of this kind. The projection, Select *, returns all properties
of the ? AlertInstIndication? , all the properties of the embedded ? InstModification? and all the properties (bef
and after) of the CIM object which triggered the ? InstModification? Indicatio As usual, the Select clause can
be changed to restrict the return parameters as desired. Any ? InstIndication? can be substituted fo
? InstModification

2.2.3 ?CIM_IndicationHandle

An abstract super class for classes that represent how an event is to be handled. This may define a
destination for delivering indications and a delivery protocol or it may define a process to invoke.
? CIM_IndicationHandler? is a subclass of ? CIM_ManagedElement? to allow modeling the dependency of
Handler on a specific service. ? IndicationHandler? has the following propertie

• [key] string ? SystemCreationClassNam

• [key] string ? SystemNam

• [key] string ? ClassCreationNam

• [key] string Name

• string Owner

? SystemCreationClassName? is a System's ? CreationClassName? . The Handler is defined in the context o

Page 28

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

? CIM_System? , where it is hosted or to which it applies. In a future release, a weak relationship will be explicitl
added to the model. This is not being done now to allow further refinement of the Handler definition and its
inheritance tree. Keys are defined now to allow the class to be instantiated.

? SystemName? is a System's Name. The Handler is defined in the context of a ? CIM_System? , where it is hos
or to which it applies. In a future release, a weak relationship will be explicitly added to the model. This is not
done now to allow further refinement of the Handler definition and its inheritance tree. Keys are defined now
to allow the class to be instantiated.

? CreationClassName? indicates the name of the class or the subclass used in the creation of an instance. Whe
used with the other key properties of this class, it allows all instances of this class and its subclasses to be
uniquely identified.

Owner may be assigned the name of the creating entity of this Handler.

?CIM_IndicationHandlerXMLHTT

There is a single CIM_ ? IndicationHandler? subclass, ? CIM_IndicationHandlerXMLHT to provide XML
encoded delivery over HTTP. The XML over HTTP Handler has a single property:

• string Destination

 Destination is a URL (Universal Resource Locator) to which HTTP/? cimXML? Indication messages are to b
delivered. The scheme prefix is implied and is not required, but must be 'http:' if specified.

The Interoperability technical work group will specify the actual transport and encoding for delivery.
However, the following should be minimally provided:

• Asynchronous transport and encoding mechanism for Indication delivery; minimally including
HTTP/XML, but not excluding other kinds of encoding and transport.

• Security defining who may register for what. To support security, it may be appropriate to bind subscriber
to user (CIM 2.3).

• Quality of delivery attributes (guaranteed, best effort, etc)

• Specify the encoding of the [? EmbeddedObject?] Strin

3. References
[1] “Common Information Model (CIM) Specification”, Version 2.2, DMTF, March 2000

http://www.dmtf.org/spec/cims.html
[2] “CIM Indication MOF”, Version 2.5, DMTF, October 2000,
http://www.dmtf.org/members/tdc/wg-events/archive/Event_v25.mof
[3] “Specification for CIM Operations over HTTP”, Version 1.1 in progress, DMTF, Date TBD
[4] “Key words for use in ? RFCs? to Indicate Requirement Leve”, Scott ? Bradner? , RFC 211 ? IET
[5] “CIM Indication Visio Diagram”, Version 2.5, DMTF, October 2000

Page 29

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

http://www.dmtf.org/members/tdc/wg-events/.admin/sitemgr.cgi/members/tdc/wg-events/archive/Event_v25.vsd
[6] “Events Requirements document”, Version 6.0, DMTF, Dec. 2, 1999

http://www.dmtf.org/members/tdc/wg-events/.admin/sitemgr.cgi/members/tdc/wg-events/archive/EvtReqsMaster.do

[7] “WBEM Query Language Draft”, Version 2.4, DMTF, June 14, 2000,
 http://www.dmtf.org/members/review/wip/DMTF-query/DSP0104.htm
[8] “EmbeddedObject Qualifier”, CR526, DMTF, October 26, 2000
http://www.dmtf.org/members/tdc/wg-events/.admin/sitemgr.cgi/members/tdc/wg-events/archive/ cr526.html

APPENDIX A
SUMMARY ? INTEROP? ? WG? ISS

Legend: S = status; Open, Closed
 P = requirement priority; Base, Future
 ?Req?# = corresponding requirement item numb

Event Model
Component

Issue / Discussion

?Req

?CIM_Indicatio Providers can be competent enough to create indications. The API between CIM
OM and providers must allow providers to indicate what they are capable of
providing.

61

?CIM_IndicationFilter How is precision information surfaced in the model; to clients, between OM and
provider? Precision and efficient (polling) is dependent on OM – Provider interface.
How does provider signal an indication?

28

?CIM_IndicationSubscriptio Subscription association between Filter and Handler classes. What is delivery
protocol for indications?

52

Subscription Model Filter creation will fail if OM or agents cannot support it. The binding protocol
defines the mechanism for recognizing a query language. Model permits multiple
query languages. Mechanism depends on OM – Client IF (? interOp

If there is no provider for a Filter, then the subscription association instance creation
should fail.

8.f

Subscription Model SQL 97 Query language may be parsed into XML (SQL 97) representation. Desire
an XML rendering of the query such that it does not need to be parsed again.-
content is process ready by an XML parser.

2.m

Subscription Model Spec needs to address how subscriber sets up subscription – What is the API to
OM? ?InterOp? dependency. Exampl Cisco creates collection of classes; Filters –
buffer overflow; ?tivoli? mgt app displays buffer overflow indication Some

8.d

Page 30

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

mechanism creates a protocol request to CIM OM to request a Cisco buffer
overflow (bind subscriber to Filter and provide destination). It is undefined which
entity (OM or subscriber) creates objects. How? Method? Service?

A Subscriber sets up a subscription by instantiating an instance of
?CIM_IndicationSubscription? with references to (instances o the desired Filter and
Handler.

Subscription Model Define the mechanisms whereby the fact of Filter publication and/or subscription
binding may be communicated to providers and subscribers.

Core

Subscription Model Model does not permit multiple destinations in a single association. Requirement for
OM to merge Filters and/or push Filter down to provider. Mechanism depends on
OM - Provider IF ? Sol'n? may have Event Model implications

Is this still and issue? The current model does support multicast.

Core

Discovery How are ?Oms? discovered by clients and provider Core

Discovery How are providers discovered by ?Oms? and client Core

Delivery MUST support distinct modes of delivery; minimally including HTTP. The
transport of indications should not be restricted to HTTP/XML. Other transport
options may be possible (such as ?channelized? transport through ?Tibco? Rendezv
which might not pass through the ?CIMOM? This would have to be handled via
management and registration of providers with Object Managers.

Delivery Different delivery guarantees such as assured, best effort, etc.

Representation How are class definitions represented so that a representation of a class may be
selectively included in a ?CIM_ClassIndication? and its subclasse

Naming Not every Indication may be generated by a CIM Object Manager. We should not
require that disambiguating naming be ONLY a function of the CIM Object
Manager. A provider may be capable of handling this. For interoperability group:
how is the protocol specified such that this is possible?

The ?CIM_IndicationFilter.SourceNamespac contains the path to a local namespace
where the events originate. If NULL the namespace of the Filter registration is
assumed.

APPENDIX B
REQUIREMENTS ANALYSIS

This section summarizes the features proposed versus the requirements stated by the Events ?WG?. Thi
proposal has avoided architectural issues where possible and has avoided a specification of a correlation or
aggregation engine or any way of specifying correlation and aggregation. Most of the correlation and aggregation
scenarios are deliberately not addressed on the grounds that they are a) very poorly understood and b) would

Page 31

file:///D:/My Webs/members/review/release/Whitepapers/DSP0107.htm

make the specification extremely complex for even a limited set of correlation and aggregation requirements.
Please refer to [6] for the list of requirements to be satisfied by the event model. The following discussion is
restricted to those requirements that were considered to be a MUST for the base specification.

This specification addresses the following requirements:
• All group 1 requirements concerning when a specific event is created and triggered
• All group 2 requirements concerning the event filter mechanism
• All group 3 requirements concerning event properties
• Requirement 4 concerning best effort event data capture
• All group 7 requirements concerning what the model supports
• All group 8 requirements concerning subscription

APPENDIX C
MAPPING EXISTING MODELS INTO

CIM

For the convenience of the reader, the following excerpts are reprinted from the CIM V2 specification
concerning mapping other systems to CIM. For a full treatment of this subject the reader is referred to
chapter 6 of that document. [1]

A recast mapping provides a mapping of the sources’ meta constructs into the targeted meta constructs, so
that a model expressed in the source can be translated into the target. The major design work is to develop a
mapping between the sources’ meta model and the CIM meta model. Once this is done, the source
expressions are recast.

A domain mapping takes a source expressed in a particular technique and maps its content into either the core
or common models, or extension sub-schemas of the CIM. This mapping does not rely heavily on a
meta-to-meta mapping; it is primarily a content-to-content mapping. In one case, the mapping is actually a
re-expression of content in a more common way using a more expressive technique.

This is an example of how CIM properties can be supplied by ? DMI? , using information from the ? DMI? di
group ("DMTF|Disks|002"). For a hypothetical CIM disk class, the CIM properties are expressed as:

CIM "Disk" property Can be sourced from ?DMI? group/attribu
?StorageTyp
?StorageInterfac
?RemovableDriv
?RemovableMedi
?DiskSiz

"MIF.DMTF|Disks|002.1"
"MIF.DMTF|Disks|002.3"
"MIF.DMTF|Disks|002.6"
"MIF.DMTF|Disks|002.7"
"MIF.DMTF|Disks|002.16"

[1] A Required property means that a provider for this instance MUST be capable of returning this property . The

Page 32

